The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

Overview

nvdiffmodeling [origin_code]

Teaser image

Differentiable rasterization applied to 3D model simplification tasks, as described in the paper:

Appearance-Driven Automatic 3D Model Simplification
Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala and Samuli Laine
https://research.nvidia.com/publication/2021-04_Appearance-Driven-Automatic-3D
https://arxiv.org/abs/2104.03989

License

Copyright © 2021, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License.

For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing

Citation

@inproceedings{Hasselgren2021,
  title     = {Appearance-Driven Automatic 3D Model Simplification},
  author    = {Jon Hasselgren and Jacob Munkberg and Jaakko Lehtinen and Miika Aittala and Samuli Laine},
  booktitle = {Eurographics Symposium on Rendering},
  year      = {2021}
}

Installation

Requirements:

Tested in Anaconda3 with Python 3.6 and PyTorch 1.8.

One time setup (Windows)

  1. Install Microsoft Visual Studio 2019+ with Microsoft Visual C++.
  2. Install Cuda 10.2 or above. Note: Install CUDA toolkit from https://developer.nvidia.com/cuda-toolkit (not through anaconda)
  3. Install the appropriate version of PyTorch compatible with the installed Cuda toolkit. Below is an example with Cuda 11.1
conda create -n dmodel python=3.6
activate dmodel
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
conda install imageio
pip install PyOpenGL glfw
  1. Install nvdiffrast in the dmodel conda env. Follow the installation instructions.

Every new command prompt

activate dmodel

Examples

Sphere to cow example:

python train.py --config configs/spot.json

The results will be stored in the out folder. The Spot model was created and released into the public domain by Keenan Crane.

Additional assets can be downloaded here [205MB]. Unzip and place the subfolders in the project data folder, e.g., data\skull. All assets are copyright of their respective authors, see included license files for further details.

Included examples

  • building.json - Our data
  • skull.json - Joint normal map and shape optimization on a skull
  • ewer.json - Ewer model from a reduced mesh as initial guess
  • gardenina.json - Aggregate geometry example
  • hibiscus.json - Aggregate geometry example
  • figure_brushed_gold_64.json - LOD example, trained against a supersampled reference
  • figure_displacement.json - Joint shape, normal map, and displacement map example

The json files that end in _paper.json are configs with the settings used for the results in the paper. They take longer and require a GPU with sufficient memory.

Server usage (through Docker)

  • Build docker image (run the command from the code root folder). docker build -f docker/Dockerfile -t diffmod:v1 . Requires a driver that supports Cuda 10.1 or newer.

  • Start an interactive docker container: docker run --gpus device=0 -it --rm -v /raid:/raid -it diffmod:v1 bash

  • Detached docker: docker run --gpus device=1 -d -v /raid:/raid -w=[path to the code] diffmod:v1 python train.py --config configs/spot.json

Owner
Qiujie (Jay) Dong
Computer Vision & Computer Graphics & Machine Learning & 3D mesh segmentation
Qiujie (Jay) Dong
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023