ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

Overview

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rendering model based on the transformer architecture. The model is capable of both novel view synthesis and camera pose estimation. It is evaluated on previously unseen 3D scenes.

Paper    Web    Demo


Open In Colab Python Versions

Getting started

Start by creating a python 3.8 venv. From the activated environment, you can run the following command in the directory containing setup.py:

pip install -e .

Getting datasets

In this section, we describe how you can prepare the data for training. We assume that you have your environment ready and you want to store the dataset into {output path} directory.

Shepard-Metzler-Parts-7

Please, first visit https://github.com/deepmind/gqn-datasets.

viewformer-cli dataset generate \
    --loader sm7 \
    --image-size 128 \
    --output {output path}/sm7 \
    --max-sequences-per-shard 2000 \
    --split train

viewformer-cli dataset generate \
    --loader sm7 \
    --image-size 128 \
    --output {output path}/sm7 \
    --max-sequences-per-shard 2000 \
    --split test

InteriorNet

Download the dataset into the directory {source} by following the instruction here: https://interiornet.org/. Then, proceed as follows:

viewformer-cli dataset generate \
    --loader interiornet \
    --path {source} \
    --image-size 128  \
    --output {output path}/interiornet \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader interiornet \
    --path {source} \
    --image-size 128  \
    --output {output path}/interiornet \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split test

Common Objects in 3D

Download the dataset into the directory {source} by following the instruction here: https://ai.facebook.com/datasets/CO3D-dataset.

Install the following dependencies: plyfile>=0.7.4 pytorch3d. Then, generate the dataset for 10 categories as follows:

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --categories "plant,teddybear,suitcase,bench,ball,cake,vase,hydrant,apple,donut" \
    --split train

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --categories "plant,teddybear,suitcase,bench,ball,cake,vase,hydrant,apple,donut" \
    --split val

Alternatively, generate the full dataset as follows:

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader co3d \
    --path {source} \
    --image-size 128  \
    --output {output path}/co3d \
    --max-images-per-shard 6000 \
    --shuffle \
    --split val

ShapeNet cars and chairs dataset

Download and extract the SRN datasets into the directory {source}. The files can be found here: https://drive.google.com/drive/folders/1OkYgeRcIcLOFu1ft5mRODWNQaPJ0ps90.

Then, generate the dataset as follows:

viewformer-cli dataset generate \
    --loader shapenet \
    --path {source} \
    --image-size 128  \
    --output {output path}/shapenet-{category}/shapenet \
    --categories {category} \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split train

viewformer-cli dataset generate \
    --loader shapenet \
    --path {source} \
    --image-size 128  \
    --output {output path}/shapenet-{category}/shapenet \
    --categories {category} \
    --max-sequences-per-shard 50 \
    --shuffle \
    --split test

where {category} is either cars or chairs.

Faster preprocessing

In order to make the preprocessing faster, you can add --shards {process id}/{num processes} to the command and run multiple instances of the command in multiple processes.

Training the codebook model

The codebook model training uses the PyTorch framework, but the resulting model can be loaded by both TensorFlow and PyTorch. The training code was also prepared for TensorFlow framework, but in order to get the same results as published in the paper, PyTorch code should be used. To train the codebook model on 8 GPUs, run the following code:

viewformer-cli train codebook \
    --job-dir . \
    --dataset "{dataset path}" \
    --num-gpus 8 \
    --batch-size 352 \
    --n-embed 1024 \
    --learning-rate 1.584e-3 \
    --total-steps 200000

Replace {dataset path} by the real dataset path. Note that you can use more than one dataset. In that case, the dataset paths should be separated by a comma. Also, if the size of dataset is not large enough to support sharding, you can reduce the number of data loading workers by using --num-val-workers and --num-workers arguments. The argument --job-dir specifies the path where the resulting model and logs will be stored. You can also use the --wandb flag, that enables logging to wandb.

Finetuning the codebook model

If you want to finetune an existing codebook model, add --resume-from-checkpoint "{checkpoint path}" to the command and increase the number of total steps.

Transforming the dataset into the code representation

Before the transformer model can be trained, the dataset has to be transformed into the code representation. This can be achieved by running the following command (on a single GPU):

viewformer-cli generate-codes \
    --model "{codebook model checkpoint}" \
    --dataset "{dataset path}" \
    --output "{code dataset path}" \
    --batch-size 64 

We assume that the codebook model checkpoint path (ending with .ckpt) is {codebook model checkpoint} and the original dataset is stored in {dataset path}. The resulting dataset will be stored in {code dataset path}.

Training the transformer model

To train the models with the same hyper-parameters as in the paper, run the commands from the following sections based on the target dataset. We assume that the codebook model checkpoint path (ending with .ckpt) is {codebook model checkpoint} and the associated code dataset is located in {code dataset path}. All commands use 8 GPUs (in our case 8 NVIDIA A100 GPUs).

InteriorNet training

viewformer-cli train transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 20 \
    --n-loss-skip 4 \
    --batch-size 40 \
    --fp16 \
    --total-steps 200000 \
    --localization-weight 5. \
    --learning-rate 8e-5 \
    --weight-decay 0.01 \
    --job-dir . \
    --pose-multiplier 1.

For the variant without localization, use --localization-weight 0. Similarly, for the variant without novel view synthesis, use --image-generation-weight 0.

CO3D finetuning

In order to finetune the model for 10 categories, use the following command:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 80 \
    --fp16 \
    --localization-weight 5 \
    --learning-rate 1e-4 \
    --total-steps 40000 \
    --epochs 40 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last). For the variant without localization, use --localization-weight 0.

For all categories and including localization:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 40 \
    --localization-weight 5 \
    --gradient-clip-val 1. \
    --learning-rate 1e-4 \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

For all categories without localization:

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 10 \
    --n-loss-skip 1 \
    --batch-size 40 \
    --localization-weight 5 \
    --learning-rate 1e-4 \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --job-dir . \
    --pose-multiplier 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

7-Scenes finetuning

viewformer-cli train finetune-transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --localization-weight 5 \
    --pose-multiplier 5. \
    --batch-size 40 \
    --fp16 \
    --learning-rate 1e-5 \
    --job-dir .  \
    --total-steps 10000 \
    --epochs 10 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

ShapeNet finetuning

viewformer-cli train finetune-transformer \
    --dataset "{cars code dataset path},{chairs code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --localization-weight 1 \
    --pose-multiplier 1 \
    --n-loss-skip 1 \
    --sequence-size 4 \
    --batch-size 64 \
    --learning-rate 1e-4 \
    --gradient-clip-val 1 \
    --job-dir .  \
    --total-steps 100000 \
    --epochs 100 \
    --weight-decay 0.05 \
    --checkpoint "{interiornet transformer model checkpoint}"

Here {interiornet transformer model checkpoint} is the path to the InteriorNet checkpoint (usually ending with weights.model.099-last).

SM7 training

viewformer-cli train transformer \
    --dataset "{code dataset path}" \
    --codebook-model "{codebook model checkpoint}" \
    --sequence-size 6 \
    --n-loss-skip 1 \
    --batch-size 128 \
    --fp16 \
    --total-steps 120000 \
    --localization-weight "cosine(0,1,120000)" \
    --learning-rate 1e-4 \
    --weight-decay 0.01 \
    --job-dir . \
    --pose-multiplier 0.2

You can safely replace the cosine schedule for localization weight with a constant term.

Evaluation

Codebook evaluation

In order to evaluate the codebook model, run the following:

viewformer-cli evaluate codebook \
    --codebook-model "{codebook model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 64 \
    --image-size 128 \
    --num-store-images 0 \
    --num-eval-images 1000 \
    --job-dir . 

Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

General transformer evaluation

In order to evaluate the transformer model, run the following:

viewformer-cli evaluate transformer \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 1 \
    --image-size 128 \
    --job-dir . \
    --num-eval-sequences 1000

Optionally, you can use --sequence-size to control the context size used for evaluation. Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

Transformer evaluation with different context sizes

In order to evaluate the transformer model with multiple context sizes, run the following:

viewformer-cli evaluate transformer-multictx \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --loader-path "{dataset path}" \
    --loader dataset \
    --loader-split test \
    --batch-size 1 \
    --image-size 128 \
    --job-dir . \
    --num-eval-sequences 1000

Note that --image-size argument controls the image size used for computing the metrics. You can change it to a different value.

CO3D evaluation

In order to evaluate the transformer model on the CO3D dataset, run the following:

viewformer-cli evaluate \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --path {original CO3D root}
    --job-dir . 

7-Scenes evaluation

In order to evaluate the transformer model on the 7-Scenes dataset, run the following:

viewformer-cli evaluate 7scenes \
    --codebook-model "{codebook model checkpoint}" \
    --transformer-model "{transformer model checkpoint}" \
    --path {original 7-Scenes root}
    --batch-size 1
    --job-dir .
    --num-store-images 0
    --top-n-matched-images 10
    --image-match-map {path to top10 matched images}

You can change --top-n-matched-images to 0 if you don't want to use top 10 closest images in the context. {path to top10 matched images} as a path to the file containing the map between most similar images from the test and the train sets. Each line is in the format {relative test image path} {relative train image path}.

Thanks

We would like to express our sincere gratitude to the authors of the following repositories, that we used in our code:

Owner
Jonáš Kulhánek
Jonáš Kulhánek
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023