A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

Overview

LP-Option-Hedging

Description

A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging impermanent loss, which may allow arbitrage. Initially written in May for personal use. Optimized by 30x with Numba. May or may not add English annotations.

Utility

The code may plot PnL graphs for leveraged LP (liquidity provider) positions on constant product Automated Market Maker (AMM), like those on Alpha Homora and Alpaca Finance. It can perform a variational search for the optimal combination of call options and put options which minimizes impermanent loss in leveraged LP. It then plots the PnL graphs for leveraged LP, the option combination with sizes and strike prices, and the combination of leveraged LP and options.

The type of leveraged LP can be borrowing USD stablecoins, borrowing cryptos like BTC, ETH, and a delta neutral combination of the two.

Parameters that need to be manually specified:

  • type of leveraged LP
  • leverage of LP
  • max LTV at liquidation
  • APRs on farming
  • annualized volatility, risk-free interest rate, and days to expiration of European options priced by the Black-Scholes model

Background

Providing liquidity on AMM is equivalent to short gamma and long theta, i.e. the LP subjects itself to impermanent loss in exchange for trading fees and liquidity mining rewards. On the other hand, long call and long put have positive gamma and negative theta. By virtue of the Carr–Madan formula, a smooth function of the underlying price, in this case the payoff of leveraged LP, can be replicated by a series of European options at continuous strikes. Hence it is possible to completely hedge leveraged LP with options. In pratice options are not available at any strike. Moreover the volatility is not constant at all strikes due to the volatility smile. Therefore the current program only considers a long call and a long put for hedging.

Disclaimer

The hedging is only approximate and theoretical. The author is not responsible for any loss caused by the use of this program. DYOR.

Reference

期权对冲LP

简介

一个分析杠杆挖矿并寻找最佳期权组合以对冲无常损失的Python程序,写于五月初,经Numba优化。

功能

画出基于恒定乘积AMM的杠杆挖矿的损益曲线,并寻找对冲无常损失的最佳期权组合,画出杠杆LP、期权组合包括张数和行权价及总仓位的损益曲线。

杠杆挖矿的类型包括借U、借币及中性敞口的组合。

需手动输入的参数:

  • 杠杆挖矿类型
  • 杠杆倍数
  • 清算时债务比例
  • 挖矿APR
  • 期权的年化波动率、无风险利率、到期日

声明

程序模拟仅为理论近似,本人不对由此造成的任何损失负责。

Owner
Aureliano
Aureliano
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022