iNAS: Integral NAS for Device-Aware Salient Object Detection

Related tags

Deep LearningiNAS
Overview

iNAS: Integral NAS for Device-Aware Salient Object Detection

Introduction

Integral search design (jointly consider backbone/head structures, design/deploy devices).


Covers mainstream handcraft saliency head design.

SOTA performance with large latency reduction on diverse hardware platforms.


Updates

0.1.0 was released in 15/11/2021:

  • Support training and searching on Salient Object Detection (SOD).
  • Support four stages in one-shot architecture search.
  • Support stand-alone model inference with json configuration.
  • Provide off-the-shelf models and experiment logs.

Please refer to changelog.md for details and release history.

Dependencies and Installation

Dependencies

Install from a local clone

  1. Clone the repo

    git clone https://github.com/guyuchao/iNAS.git
  2. Install dependent packages

    conda create -n iNAS python=3.8
    conda install -c pytorch pytorch=1.7 torchvision cudatoolkit=10.2
    pip install -r requirements.txt
  3. Install iNAS
    Please run the following commands in the iNAS root path to install iNAS:

    python setup.py develop

Dataset Preparation

Folder Structure

iNAS
├── iNAS
├── experiment
├── scripts
├── options
├── datasets
│   ├── saliency
│   │   ├── DUTS-TR/            # Contains both images (.jpg) and labels (.png).
│   │   ├── DUTS-TR.lst         # Specify the image-label pair for training or testing.
│   │   ├── ECSSD/
│   │   ├── ECSSD.lst
│   │   ├── ...

Common Image SOD Datasets

We provide a list of common salient object detection datasets.

Name Datasets Short Description Download
SOD Training DUTS-TR 10553 images for SOD training Google Drive / Baidu Drive (psd: w69q)
SOD Testing ECSSD 1000 images for SOD testing
DUT-OMRON 5168 images for SOD testing
DUTS-TE 5019 images for SOD testing
HKU-IS 4447 images for SOD testing
PASCAL-S 850 images for SOD testing

How to Use

The iNAS integrates four main steps of one-shot neural architecture search:

  • Train supernet: Provide a fast performance evaluator for searching.
  • Search models: Find a pareto frontier based on performance evaluator and resource evaluator.
  • Convert weight/Retrain/Finetune: Promote searched model performance to its best. (We now support converting supernet weight to stand-alone models without retraining.)
  • Deploy: Test stand-alone models.

Please see Tutorial.md for the basic usage of those steps in iNAS.

Model Zoo

Pre-trained models and log examples are available in ModelZoo.md.

TODO List

  • Support multi-processing search (simply use data-parallel cannot increase search speed).
  • Complete documentations.
  • Add some applications.

Citation

If you find this project useful in your research, please consider cite:

@inproceedings{gu2021inas,
  title={iNAS: Integral NAS for Device-Aware Salient Object Detection},
  author={Gu, Yu-Chao and Gao, Shang-Hua and Cao, Xu-Sheng and Du, Peng and Lu, Shao-Ping and Cheng, Ming-Ming},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4934--4944},
  year={2021}
}

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (cc-by-nc-sa), where only non-commercial usage is allowed. For commercial usage, please contact us.

Acknowledgement

The project structure is borrowed from BasicSR, and parts of implementation and evaluation codes are borrowed from Once-For-All, BASNet and BiSeNet . Thanks for these excellent projects.

Contact

If you have any questions, please email [email protected].

Owner
顾宇超
Postgraduate at Nankai University.
顾宇超
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022