The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

Overview

SPatchGAN: Official TensorFlow Implementation

Paper

  • "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation" (ICCV 2021)



Environment

  • CUDA 10.0
  • Python 3.6
  • pip install -r requirements.txt

Dataset

  • Dataset structure (dataset_struct='plain')
- dataset
    - <dataset_name>
        - trainA
            - 1.jpg
            - 2.jpg
            - ...
        - trainB
            - 3.jpg
            - 4.jpg
            - ...
        - testA
            - 5.jpg
            - 6.jpg
            - ...
        - testB
            - 7.jpg
            - 8.jpg
            - ...
  • Supported extensions: jpg, jpeg, png
  • An additional level of subdirectories is also supported by setting dataset_struct to 'tree', e.g.,
- trainA
    - subdir1
        - 1.jpg
        - 2.jpg
        - ...
    - subdir2
        - ...
  • Selfie-to-anime:

    • The dataset can be downloaded from U-GAT-IT.
  • Male-to-female and glasses removal:

    • The datasets can be downloaded from Council-GAN.
    • The images must be center cropped from 218x178 to 178x178 before training or testing.
    • For glasses removal, only the male images are used in the experiments in our paper. Note that the dataset from Council-GAN has already been split into two subdirectories, "1" for male and "2" for female.

Training

  • Set the suffix to anything descriptive, e.g., the date.
  • Selfie-to-Anime
python main.py --dataset selfie2anime --augment_type resize_crop --n_scales_dis 3 --suffix scale3_cyc20_20210831 --phase train
  • Male-to-Female
python main.py --dataset male2female --cyc_weight 10 --suffix cyc10_20210831 --phase train
  • Glasses Removal
python main.py --dataset glasses-male --cyc_weight 30 --suffix cyc30_20210831 --phase train
  • Find the output in ./output/SPatchGAN_<dataset_name>_<suffix>
  • The same command can be used to continue training based on the latest checkpoint.
  • For a new task, we recommend to use the default setting as the starting point, and adjust the hyperparameters according to the tips.
  • Check configs.py for all the hyperparameters.

Testing with the latest checkpoint

  • Replace --phase train with --phase test

Save a frozen model (.pb)

  • Replace --phase train with --phase freeze_graph
  • Find the saved frozen model in ./output/SPatchGAN_<dataset_name>_<suffix>/checkpoint/pb

Testing with the frozon model

cd frozen_model
python test_frozen_model.py --image <input_image_or_dir> --output_dir <output_dir> --model <frozen_model_path>

Pretrained Models

  • Download the pretrained models from google drive, and put them in the output directory.
  • You can test the checkpoints (in ./checkpoint) or the frozen models (in ./checkpoint/pb). Either way produces the same results.
  • The results generated by the pretrained models are slightly different from those in the paper, since we have rerun the training after code refactoring.
  • We set n_scales_dis to 3 for the pretrained selfie2anime model to further improve the performance. It was 4 in the paper. See more details in the tips.
  • We also provide the generated results of the last 100 test images (in ./gen, sorted by name, no cherry-picking) for the calibration purpose.

Other Implementations

Citation

@inproceedings{SPatchGAN2021,
  title={SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation},
  author={Xuning Shao and Weidong Zhang},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Acknowledgement

  • Our code is partially based on U-GAT-IT.
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023