The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

Overview

SPatchGAN: Official TensorFlow Implementation

Paper

  • "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation" (ICCV 2021)



Environment

  • CUDA 10.0
  • Python 3.6
  • pip install -r requirements.txt

Dataset

  • Dataset structure (dataset_struct='plain')
- dataset
    - <dataset_name>
        - trainA
            - 1.jpg
            - 2.jpg
            - ...
        - trainB
            - 3.jpg
            - 4.jpg
            - ...
        - testA
            - 5.jpg
            - 6.jpg
            - ...
        - testB
            - 7.jpg
            - 8.jpg
            - ...
  • Supported extensions: jpg, jpeg, png
  • An additional level of subdirectories is also supported by setting dataset_struct to 'tree', e.g.,
- trainA
    - subdir1
        - 1.jpg
        - 2.jpg
        - ...
    - subdir2
        - ...
  • Selfie-to-anime:

    • The dataset can be downloaded from U-GAT-IT.
  • Male-to-female and glasses removal:

    • The datasets can be downloaded from Council-GAN.
    • The images must be center cropped from 218x178 to 178x178 before training or testing.
    • For glasses removal, only the male images are used in the experiments in our paper. Note that the dataset from Council-GAN has already been split into two subdirectories, "1" for male and "2" for female.

Training

  • Set the suffix to anything descriptive, e.g., the date.
  • Selfie-to-Anime
python main.py --dataset selfie2anime --augment_type resize_crop --n_scales_dis 3 --suffix scale3_cyc20_20210831 --phase train
  • Male-to-Female
python main.py --dataset male2female --cyc_weight 10 --suffix cyc10_20210831 --phase train
  • Glasses Removal
python main.py --dataset glasses-male --cyc_weight 30 --suffix cyc30_20210831 --phase train
  • Find the output in ./output/SPatchGAN_<dataset_name>_<suffix>
  • The same command can be used to continue training based on the latest checkpoint.
  • For a new task, we recommend to use the default setting as the starting point, and adjust the hyperparameters according to the tips.
  • Check configs.py for all the hyperparameters.

Testing with the latest checkpoint

  • Replace --phase train with --phase test

Save a frozen model (.pb)

  • Replace --phase train with --phase freeze_graph
  • Find the saved frozen model in ./output/SPatchGAN_<dataset_name>_<suffix>/checkpoint/pb

Testing with the frozon model

cd frozen_model
python test_frozen_model.py --image <input_image_or_dir> --output_dir <output_dir> --model <frozen_model_path>

Pretrained Models

  • Download the pretrained models from google drive, and put them in the output directory.
  • You can test the checkpoints (in ./checkpoint) or the frozen models (in ./checkpoint/pb). Either way produces the same results.
  • The results generated by the pretrained models are slightly different from those in the paper, since we have rerun the training after code refactoring.
  • We set n_scales_dis to 3 for the pretrained selfie2anime model to further improve the performance. It was 4 in the paper. See more details in the tips.
  • We also provide the generated results of the last 100 test images (in ./gen, sorted by name, no cherry-picking) for the calibration purpose.

Other Implementations

Citation

@inproceedings{SPatchGAN2021,
  title={SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation},
  author={Xuning Shao and Weidong Zhang},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Acknowledgement

  • Our code is partially based on U-GAT-IT.
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022