Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

Overview

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data

This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data PDF.

Our approach accurately segments the scene into moving and static objects, i.e., distinguishing between moving cars vs. parked cars. It runs faster than the frame rate of the sensor and can be used to improve 3D LiDAR-based odometry/SLAM and mapping results as shown below.

Additionally, we created a new benchmark for LiDAR-based moving object segmentation based on SemanticKITTI here.

Complete demo video can be found in YouTube here. LiDAR-MOS in action:

Table of Contents

  1. Introduction of the repo and benchmark
  2. Publication
  3. Dependencies
  4. How to use
  5. Applications
  6. Collection of downloads
  7. License

Publication

If you use our code and benchmark in your academic work, please cite the corresponding paper:

@article{chen2021ral,
    title={{Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data}},
    author={X. Chen and S. Li and B. Mersch and L. Wiesmann and J. Gall and J. Behley and C. Stachniss},
    year={2021},
    journal={IEEE Robotics and Automation Letters (RA-L)},
    doi = {10.1109/LRA.2021.3093567},
    issn = {2377-3766},
}

Dependencies

We built and tested our work based on SalsaNext, RangeNet++ and MINet. We thank the original authors for their nice work and implementation. If you are interested in fast LiDAR-based semantic segmentation, we strongly recommend having a look at the original repositories.

Note that, in this repo, we show that how easily we could achieve LiDAR-based moving object segmentation exploiting sequential information with existing segmentation networks. We didn't change the original pipeline of the segmentation networks, but only changed the data loader and input of the network as shown in the figure below. Therefore, our method can be used with any range-image-based LiDAR segmentation networks.

Our method is based on range images. To use range projection with fast c++ library, please find the usage doc here.

How to use

For a quick test of all the steps below, one could download a toy dataset here and decompress it in the data\ folder following the data structure data/README.md.

Prepare training data

To use our method, one needs to generate the residual images. Here is a quick demo:

  $ python3 utils/gen_residual_images.py

More setup about the data preparation can be found in the yaml file config/data_preparing.yaml. To prepare the training data for the whole KITTI-Odometry dataset, please download the original website.

Using SalsaNext as the baseline

To use SalsaNext as the baseline segmentation network for LiDAR-MOS, one should follow the mos_SalsaNext/README.md to it up.

Inferring

To generate the LiDAR-MOS predictions with pretrained model. Quick test on toy dataset, directly run

  $ cd mos_SalsaNext/train/tasks/semantic
  $ python3 infer.py -d ../../../../data -m ../../../../data/model_salsanext_residual_1 -l ../../../../data/predictions_salsanext_residual_1_new -s valid

Inferring the whole dataset, please download the KITTI-Odometry dataset from the original website, and change the corresponding paths.

  $ cd mos_SalsaNext/train/tasks/semantic
  $ python3 infer.py -d path/to/kitti/dataset -m path/to/pretrained_model -l path/to/log -s train/valid/test # depending of desired split to evaluate

Training

To train a LiDAR-MOS network with SalsaNext from scratch, one has to download the KITTI-Odometry dataset and Semantic-Kitti dataset: Change the corresponding paths and run:

  $ cd mos_SalsaNext/train/tasks/semantic
  $ ./train.sh -d path/to/kitti/dataset -a salsanext_mos.yml -l path/to/log -c 0  # the number of used gpu cores

Using RangeNet++ as the baseline

To use RangeNet++ as the baseline segmentation network for LiDAR-MOS, one should follow the mos_RangeNet/README.md to set it up.

Inferring

Inferring the whole dataset, please download the KITTI-Odometry dataset from the original website, the [pretrained model](todo: add pretrained model for rangenet) and change the corresponding paths.

  $ cd mos_RangeNet/tasks/semantic
  $ python3 infer.py -d path/to/kitti/dataset -m path/to/pretrained_model -l path/to/log -s train/valid/test # depending of desired split to evaluate

Training

To train a LiDAR-MOS network with RangeNet++ from scratch, one has to download the KITTI-Odometry dataset and Semantic-Kitti dataset and change the corresponding paths and run:

  $ cd mos_RangeNet/tasks/semantic
  $ python3 train.py -d path/to/kitti/dataset -ac rangenet_mos.yaml -l path/to/log

More pretrained model and LiDAR-MOS predictions can be found in collection of downloads.

Evaluation and visualization

How to evaluate

Evaluation metrics. Let's call the moving (dynamic) status as D and the static status as S.

Since we ignore the unlabelled and invalid status, therefore in MOD there are only two classes.

GT\Prediction dynamic static
dynamic TD FS
static FD TS
  • $$ IoU_{MOS} = \frac{TD}{TD+FD+FS} $$

To evaluate the MOS results on the toy dataset just run:

  $ python3 utils/evaluate_mos.py -d data -p data/predictions_salsanext_residual_1_valid -s valid

To evaluate the MOS results on our LiDAR-MOS benchmark please have a look at our semantic-kitti-api and benchmark website.

How to visualize the predictions

To visualize the MOS results on the toy dataset just run:

  $ python3 utils/visualize_mos.py -d data -p data/predictions_salsanext_residual_1_valid -s 8  # here we use a specific sequence number

where:

  • sequence is the sequence to be accessed.
  • dataset is the path to the kitti dataset where the sequences directory is.

Navigation:

  • n is next scan,
  • b is previous scan,
  • esc or q exits.

Applications

LiDAR-MOS is very important for building consistent maps, making future state predictions, avoiding collisions, and planning. It can also improve and robustify pose estimation, sensor data registration, and SLAM. Here we show two obvious applications of our LiDAR-MOS which are LiDAR-based odometry/SLAM as well as 3D mapping. Before that, we show two simple examples of how to combine our method with semantics and clean the scans. After cleaning scans we can get better odometry/SLAM and 3D mapping results.

Note that, here we show two direct use cases of our MOS approach without any further optimizations employed.

Enhanced with semantics

To show a simple way of combining our LiDAR-MOS with semantics, we provide a quick demo with the toy dataset:

  $ python3 utils/combine_semantics.py

It just simply checks whether the moving objects are movable classes or not. If not, re-assigned as static.

Clean the scans

To clean the LiDAR scans with our LiDAR-MOS as masks, we also provide a quick demo on the toy dataset:

  $ python3 utils/scan_cleaner.py

Odometry/SLAM

Using the cleaned LiDAR scans, we see that by simply applying our MOS predictions as a preprocessing mask, the odometry results are improved in both the KITTI training and test data and even slightly better than the carefully-designed full classes semantic-enhanced SuMa++.

The testing results of our methods can also be found in KITTI-Odometry benchmark.

Mapping

we compare the aggregated point cloud maps (left) directly with the raw LiDAR scans, (right) with the cleaned LiDAR scans by applying our MOS predictions as masks. As can be seen, there are moving objects present that pollute the map, which might have adversarial effects, when used for localization or path planning. By using our MOS predictions as masks, we can effectively remove these artifacts and get a clean map.

Collection of downloads

License

This project is free software made available under the MIT License. For details see the LICENSE file.

Comments
  • How to use SalsaNet with my own dataset?

    How to use SalsaNet with my own dataset?

    Hi, I have read the paper and built-and-run your LiDAR-MOS.
    Thanks for sharing your awesome projects here.


    I have a question.
    How can I use the code with my own dataset?
    I'll use the pretrained model you uploaded, so I think all I need to do is make my data be appropriate format for the LiDAR-MOS.
    The data I have consists of .bag file and .pcd file.

    I'd appreciate for you to give me some advice.

    Best regards.

    opened by bigbigpark 15
  • Questions about LIDAR-MOS visualization

    Questions about LIDAR-MOS visualization

    Hello, your LIDAR-MOS code is very good, but I have a problem that cannot be visualized when reproducing your code, as shown in the figure: image After running this command, the program seems to be stuck. I don't know why, I want to get your visualized results, as shown below: image ps:Author reply:From the results of the operation, it seems to be a tkinter problem.But the tkinker module does not seem to be missing. If anyone knows how to solve it, hope you can help me, thanks.

    opened by MrNeoJeep 13
  • TRAIN BUGS

    TRAIN BUGS

    Thanks for your quick response! @Chen-Xieyuanli

    I trained with salsa_mos in semantic kitti. When it run here Lr: 3.977e-03 | Update: 3.258e-04 mean,5.209e-04 std | Epoch: [0][950/2391] | Time 0.641 (0.623) | Data 0.081 (0.067) | Loss 0.6863 (0.9777) | acc 0.830 (0.855) | IoU 0.417 (0.434) | [1 day, 3:19:41] LiDAR-MOS/mos_SalsaNext/train/tasks/semantic/../../common/laserscan.py:166: RuntimeWarning: invalid value encountered in true_divide pitch = np.arcsin(scan_z / depth) i got error File "conda/envs/salsa/lib/python3.9/site-packages/torch/_utils.py", line 457, in reraise raise exception IndexError: Caught IndexError in DataLoader worker process 1. and File "LiDAR-MOS/mos_SalsaNext/train/tasks/semantic/../../common/laserscan.py", line 201, in do_range_projection self.proj_range[proj_y, proj_x] = depth IndexError: index -2147483648 is out of bounds for axis 0 with size 64 The conda env is `- python=3.9.12=h12debd9_0

    python-flatbuffers=1.12=pyhd3eb1b0_0 pytorch=1.11.0=py3.9_cuda11.3_cudnn8.2.0_0 pytorch-mutex=1.0=cuda tensorflow-base=2.6.0=mkl_py39h3d85931_0 tensorflow-estimator=2.6.0=pyh7b7c402_0` Is there any wrong with this env? Or it is too new? Or there is something wrong with data in residual images?

    opened by LiXiang0021 10
  • Multiple input frames

    Multiple input frames

    Thank you for your great code!

    I notice in rangenet_mos.yaml and salsanext_mos.yaml you only use one input frame. If I want to use multiple scans for training, how can I do it?

    As far as I know, I need to change n_input_scans in both backbone and dataset, and transform in the dataset. What else do I need?

    Another question is about the pose transform. When using a sequence of scans to train the model, why do you transform the pose to the last scan but not the first scan? here

    opened by Trainingzy 9
  • Migrating the model to Livox Horizon

    Migrating the model to Livox Horizon

    Thanks for your excellent work. I download and infer the toy dataset you provide and the performance is good. Now I want to use the model in my Livox Horizon with 80x25 FoV and similar point density to 64-line LiDAR. When I use your tools to generate range image and residual image, I just change the pose.txt and calib.txt to my own and everything is alright, I can generate correct range image and residual image. But when I try to infer my data using the model, I meet this error the range image generation function in salsanext. Are there any possible reasons? image

    opened by Psyclonus2887 8
  • dims of multi_residuals_images, thanks!

    dims of multi_residuals_images, thanks!

    Dear author,

    IF n_input_scans =2, so dims of proj_full is 12? (x,y ,z ,r,e, x,y,z,r,e, residual1 ,resudual2)?

    Is that right?

    I'm so sorry to bother you. That's really confused me. image

    Thanks.

    opened by emilyemliyM 8
  • Question about loading the pretrained salsanext model

    Question about loading the pretrained salsanext model

    Hi!

    Thanks so much for the codes! I've a question about loading the pretrained salsanext model. When I followed the steps outlined in the "How to use" section and tested on the toy example, I came across the issue when trying to run infer.py on the toy dataset (python3 infer.py -d ../../../../data -m ../../../../data/model_salsanext_residual_1 -l ../../../../data/predictions_salsanext_residual_1_new -s valid) and got this error:

    RuntimeError: ../../../../data/model_salsanext_residual_1/SalsaNext_valid_best is a zip archive (did you mean to use torch.jit.load()?)

    I tried to switch from torch.load() to torch.jit.load() in the user.py as it suggested but it leads to other errors. What did I do wrong, or did I miss something along the way? I set up the environment according to the instruction linked on the github (using Pytorch 1.1).

    Thank you in advance for your help!

    opened by maneekwant 8
  • How can i train 'SalsaNext' successfully?(训练'SalsaNext'时侯出现了问题)

    How can i train 'SalsaNext' successfully?(训练'SalsaNext'时侯出现了问题)

    Hi, thanks for sharing your great code. I'm just trying to do whole process of your works. but I can't train SalsaNext,

    I tried :

    ./train.sh -d ../../../../dataset/KITTI_dataset/velodyne_laser/dataset/ -a salsanext_mos.yml -l logs/ -c 0
    

    learning process arrived at :

    Lr: 5.944e-03 | Update: 2.381e-04 mean,3.611e-04 std | Epoch: [0][11370/19130] | Time 0.203 (0.204) | Data 0.030 (0.031) | Loss 0.3839 (0.2800) | acc 0.962 (0.980) | IoU 0.685 (0.517) | [7 days, 18:10:40]
    

    and the error msgs i got :

    proj_full = torch.cat([proj_full, torch.unsqueeze(eval("proj_residuals_" + str(i+1)), 0)])
    RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 2048 and 2058 in dimension 2 at ../aten/src/TH/generic/THTensor.cpp:711
    

    Is the conda environment setting wrong? currently using :

    tensorboard               1.13.1                   pypi_0    pypi
    tensorboard-data-server   0.6.1                    pypi_0    pypi
    tensorboard-plugin-wit    1.8.0                    pypi_0    pypi
    tensorflow                1.13.1                   pypi_0    pypi
    tensorflow-estimator      1.13.0                   pypi_0    pypi
    

    Or, can you check again links Collection of downloads ? seems like can't access now. Thanks you !

    bug 
    opened by Sunghooon 7
  • prediction labels in toy dataset

    prediction labels in toy dataset

    Hi,

    I see there are some segmentation results already present in the toy dataset. image

    The one that says salsanext, does it use one residual image?

    Best Regards Sambit

    opened by SM1991CODES 6
  • How to use the pretrained model to test my own Lidar Scans?

    How to use the pretrained model to test my own Lidar Scans?

    Thanks for your work! Now I want to clean my own Lidar Scans.

    1. Use infer.py to get mos predictions label
    2. Then use utils/scan_cleaner.py to clean Is that right? if no, can you give me some advice? Thanks a lot!
    opened by Cxz-dev 5
  • how to change the

    how to change the "n_input_scans"?

    I only change the "arch_cfg.yaml" in model ,but there is a error:size mismatch for module.downCntx.conv1.weight: copying a param with shape torch.Size([32, 6, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 13, 1, 1]),so how to change the "n_input_scans"?thank you :)

    opened by pikaqiu0131 5
  • About set my own Lidar pose to kitti format pose

    About set my own Lidar pose to kitti format pose

    Hi @Chen-Xieyuanli ! Thanks for your code! Now I have another question, I know the code need pose as input(such as gen_residual_images.py), but when I use my own lidar without camera, how can I get the pose.txt from lidar odemetry? I think the pose need to be transformed in LiDAR coord, so can I just use the pose(1*3) based in Lidar coord which came from lidar odemetry as input?

    opened by Cxz-dev 3
  • How to re-train when training is unexpectedly interrupted?

    How to re-train when training is unexpectedly interrupted?

    Hi,thank you for your wonderful open source,I would like to know whether it can continue to train from the last time when training is unexpectedly interrupted? If can,how to do it ?

    opened by beyounged 8
  • RuntimeError(

    RuntimeError("grad can be implicitly created only for scalar outputs")

    Hello, thank you for your great work. I am training my own dataset and encountered the following error.

    Ignoring class  0  in IoU evaluation
    [IOU EVAL] IGNORE:  tensor([0])
    [IOU EVAL] INCLUDE:  tensor([1, 2])
    Lr: 3.106e-05 | Update: 2.258e-01 mean,4.181e-01 std | Epoch: [0][0/322] | Time 3.170 (3.170) | Data 0.154 (0.154) | Loss 1.9250 (1.9250) | acc 0.533 (0.533) | IoU 0.363 (0.363) | [1 day, 20:35:54]
    Traceback (most recent call last):
      File "/content/LiDAR-MOS/mos_SalsaNext/train/tasks/semantic/train.py", line 178, in <module>
        trainer.train()
      File "../../tasks/semantic/modules/trainer.py", line 274, in train
        show_scans=self.ARCH["train"]["show_scans"])
      File "../../tasks/semantic/modules/trainer.py", line 391, in train_epoch
        loss_m.backward()
      File "/usr/local/lib/python3.7/dist-packages/torch/_tensor.py", line 396, in backward
        torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
      File "/usr/local/lib/python3.7/dist-packages/torch/autograd/__init__.py", line 166, in backward
        grad_tensors_ = _make_grads(tensors, grad_tensors_, is_grads_batched=False)
      File "/usr/local/lib/python3.7/dist-packages/torch/autograd/__init__.py", line 67, in _make_grads
        raise RuntimeError("grad can be implicitly created only for scalar outputs")
    RuntimeError: grad can be implicitly created only for scalar outputs
    
      optimizer.zero_grad()
                if self.n_gpus > 1:
                    idx = torch.ones(self.n_gpus).cuda()
                    loss_m.backward(idx)
                else:
                    loss_m.backward() #here i got the error
                optimizer.step()
    

    I have looked the error in google, and it usually happens when you use two or more GPUs. However, I am using only one GPU and got this error. Could you please help me to solve this error.

    opened by e1339g 1
  • Training setups (tested with different GPUs)

    Training setups (tested with different GPUs)

    Dear author,

    Thanks for the sharing code.

    I'm trying to reproduce the metrics from the paper, but haven't been successful yet. I would like to ask about some training parameters and hardware equipment for the experiment? Regarding the indicators such as iou in the paper, do you mean miou or just the iou of the moving class?

    Thanks!

    good first issue 
    opened by emilyemliyM 6
  • Tweaking the model for partial azimuth FOV Lidar

    Tweaking the model for partial azimuth FOV Lidar

    Hi, My Lidar's azimuth FOV is only ~100 [deg] . What would be the best way to tweak the model or some configuration so it will work? Currently the range images (and also the residual images) are very sparse at the right and left sides and I think that is one of the reason for the bad performance I get. Thanks

    opened by boazMgm 7
Releases(v1.1)
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022