Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Overview

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV)

Title

FLAME (Fire Luminosity Airborne-based Machine learning Evaluation) Dataset
Alt Text

Paper

You can find the article related to this code here at Elsevier or
You can find the preprint from the Arxiv website.

Dataset

  • The dataset is uploaded on IEEE dataport. You can find the dataset here at IEEE Dataport or DOI. IEEE account is free, so you can create an account and access the dataset files without any payment or subscription.

  • This table below shows all available data for the dataset.

  • This project uses items 7, 8, 9, and 10 from the dataset. Items 7 and 8 are being used for the "Fire_vs_NoFire" image classification. Items 9 and 10 are for the fire segmentation.

  • If you clone this repository on your local drive, please download item 7 from the dataset and unzip in directory /frames/Training/... for the Training phase of the "Fire_vs_NoFire" image classification. The direcotry looks like this:

Repository/frames/Training
                    ├── Fire/*.jpg
                    ├── No_Fire/*.jpg
  • For testing your trained model, please use item 8 and unzip it in direcotry /frame/Test/... . The direcotry looks like this:
Repository/frames/Test
                    ├── Fire/*.jpg
                    ├── No_Fire/*.jpg
  • Items 9 and 10 should be unzipped in these directories frames/Segmentation/Data/Image/... and frames/Segmentation/Data/Masks/... accordingly. The direcotry looks like this:
Repository/frames/Segmentation/Data
                                ├── Images/*.jpg
                                ├── Masks/*.png
  • Please remove other README files from those directories and make sure that only images are there.

Model

  • The binary fire classifcation model of this project is based on the Xception Network:

Alt text

  • The fire segmentation model of this project is based on the U-NET:

Alt text

Sample

  • A short sample video of the dataset is available on YouTube: Alt text

Requirements

  • os
  • re
  • cv2
  • copy
  • tqdm
  • scipy
  • pickle
  • numpy
  • random
  • itertools
  • Keras 2.4.0
  • scikit-image
  • Tensorflow 2.3.0
  • matplotlib.pyplot

Code

This code is run and tested on Python 3.6 on linux (Ubuntu 18.04) machine with no issues. There is a config.py file in this directoy which shows all the configuration parameters such as Mode, image target size, Epochs, batch size, train_validation ratio, etc. All dependency files are available in the root directory of this repository.

  • To run the training phase for the "Fire_vs_NoFire" image classification, change the mode value to 'Training' in the config.py file. Like This
Mode = 'Training'

Make sure that you have copied and unzipped the data in correct direcotry.

  • To run the test phase for the "Fire_vs_NoFire" image classification, change the mode value to 'Classification' in the config.py file. Change This
Mode = 'Classification'

Make sure that you have copied and unzipped the data in correct direcotry.

  • To run the test phase for the Fire segmentation, change the mode value to 'Classification' in the config.py file. Change This
Mode = 'Segmentation'

Make sure that you have copied and unzipped the data in correct direcotry.

Then after setting your parameters, just run the main.py file.

python main.py

Results

  • Fire classification accuracy:

Alt text

  • Fire classification Confusion Matrix:

  • Fire segmentation metrics and evaluation:

Alt text

  • Comparison between generated masks and grount truth mask:

Alt text

  • Federated Learning sample
    To consider future challenges, we defined a new sample of federated learning on a local node (NVidia Jetson Nano, 4GB RAM). Jetson Nano is available in two versions: 1) 4GB RAM developer kit, and 2) 2GB RAM developer kit. In this Implementation, the 4GB version is used with the technical specifications of a 128-core Maxwell GPU, a Quad-core ARM A57 @ 1.43 GHz CPU, 4GB LPDDR4 RAM, and a 32GB microSD storage. To test Jetson Nano for the federated learning, items (9) and (10) from Dataset are used for the fire segmentation. Since Jetson Nano has limited RAM, we assumed that each drone has access to a portion of the FLAME dataset. Only 500 fire images and masks are considered for the training and validation phase on the drone. As we aimed at learning a model on a smaller subset of the FLAME dataset and inferring that model, the default Tensorflow version is used here. Also, the image and mask dimension for each input is reduced to 128 x 128 x 3 rather than 512 x 512 x 3. To save more memory on the RAM, all peripherals were turned off and only WiFi was working at that time for the Secure Shell (SSH) connection. The setup of this node is:

Citation

If you find it useful, please cite our paper as follows:

@article{shamsoshoara2021aerial,
  title={Aerial Imagery Pile burn detection using Deep Learning: the FLAME dataset},
  author={Shamsoshoara, Alireza and Afghah, Fatemeh and Razi, Abolfazl and Zheng, Liming and Ful{\'e}, Peter Z and Blasch, Erik},
  journal={Computer Networks},
  pages={108001},
  year={2021},
  publisher={Elsevier}
}

Other related repositories and articles

License

For academtic and non-commercial usage

Owner
Ph.D. in Informatics and Computing from Northern Arizona University, M.Sc. in Informatics, M.Sc, in Electrical Engineering, B.Sc. in Electrical Engineering
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022