A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview

Overview

This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My motivation to initiate this project is two fold. I always felt the urge to be able to play piano since my childhood but huge instrumental costs barred my way. This is true for most of the musical instruments which are often very costly. I thought of putting my recently acquired computer vision skills to practice and make virtual music instruments through this project. Currently, this project only supports piano but I will add more modules for other instruments soon. While this project is very basic, more contributions are always welcomed to further improve it.

Working

This project employs use of many other libraries apart from OpenCV such as pygame, mediapipe etc to develop it. In the first step, we use mediapipe library to detect 21 finger landmarks for each hand. MediaPipe offers open source cross-platform, customizable ML solutions for object detection, face detection, human pose detection/tracking etc, and is one of the most widely used libraries for hand motion tracking. Once all finger landmarks are obtained, we use a simple algorithm to detect a particular key press. If key press is within the boundaries of virtual piano, we add that piano key music to a list and start playing it. The algorithm is capable of mixing up several key notes simultaneously in case of multiple key presses. Interesting, isn't it? So let's dive in and get it started on your own PC!

Getting Started

  • As with any other project, we will first install all the dependencies required for building this project which are listed down in the requirements.txt file. To install, use `pip3 install' command as shown below:

pip3 install -r requirements.txt

Note that python 2 users should use pip instead of pip3. If any dependencies couldn't be installed on your system due to compatibility issues, please search for other compatible versions!

  • Once dependencies are installed, it is time to clone the repository using git clone and change to ~/scripts directory. Use the following command.

git clone https://github.com/AbhinavGupta121/Virtual-Piano-using-Open-CV.git

cd Virtual-Piano-using-Open-CV/scripts/

  • Now it is time to install 88 piano key sounds. You can simply download them manually using this (link) or by using command line itself. To use command line, run this command under ~/scripts folder.

wget https://archive.org/download/25405-tedagame-88-piano-keys-long-reverb/25405__tedagame__88-piano-keys-long-reverb.zip

Now simply extract the zip file and you are good to go!

  • In the next step, we shall configure our android phone camera and process its images locally on our laptop. To do that, first install the application IP Webcam on your android phone. Next, make sure your phone and laptop are connected to the same network. Open your IP Webcam application, click “Start Server” (usually found at the bottom). This will open a camera on your Phone. A URL is being displayed on the Phone screen (Example- https://192.168.22.176:8080/), type the same URL on your PC browser, and under “Video renderer” Section, click on “Javascript”. You should be able to see the phone's camera. you can optionally chose to switch the cameras if you like. Make sure the camera is facing you. To know more you can visit this link .

  • That's pretty much it! Now open up your terminal and run the Virtual_Piano.py using this command.

python3 Virtual_Piano.py.

A window will pop up soon (<30seconds) displaying your phone's camera view and a virtual piano. Move around your hands and imitate key pressing to hear melodic piano sounds! Congratulations!!

Results

Hand Landmark Detection

Finger landmark Detection

Real-time virtual piano (piano sounds not audible in video)

Piano_video.audioless.mp4

FPS

Nearly 4fps was achieved with an image resolution of (640,480) on a Intel® Core™ i5-7200U CPU @ 2.50GHz × 4. To ease up computations, we can reduce image resolution or optimize within code itself. Network latency can be further minimized by using laptop webcam directly in which case >10 fps was achieved!

Owner
Abhinav Gupta
Abhinav Gupta
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022