This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Overview

Skeleton Aware Multi-modal Sign Language Recognition

By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu.

Smile Lab @ Northeastern University

Python 3.7 Packagist Last Commit License: CC0 4.0 PWC


This repo contains the official code of Skeleton Aware Multi-modal Sign Language Recognition (SAM-SLR) that ranked 1st in CVPR 2021 Challenge: Looking at People Large Scale Signer Independent Isolated Sign Language Recognition.

Our paper has been accepted to CVPR21 Workshop. A preprint version is available on arXiv. Please cite our paper if you find this repo useful in your research.

News

[2021/04/10] Our workshop paper has been accepted. Citation info updated.

[2021/03/24] A preprint version of our paper is released here.

[2021/03/20] Our work has been verified and announced by the organizers as the 1st place winner of the challenge!

[2021/03/15] The code is released to public on GitHub.

[2021/03/11] Our team (smilelab2021) ranked 1st in both tracks and here are the links to the leaderboards:

Table of Contents

Data Preparation

Download AUTSL Dataset.

We processed the dataset into six modalities in total: skeleton, skeleton features, rgb frames, flow color, hha and flow depth.

  1. Please put original train, val, test videos in data folder as
    data
    ├── train
    │   ├── signer0_sample1_color.mp4
    │   ├── signer0_sample1_depth.mp4
    │   ├── signer0_sample2_color.mp4
    │   ├── signer0_sample2_depth.mp4
    │   └── ...
    ├── val
    │   └── ...
    └── test
        └── ...
  1. Follow the data_processs/readme.md to process the data.

  2. Use TPose/data_process to extract wholebody pose features.

Requirements and Docker Image

The code is written using Anaconda Python >= 3.6 and Pytorch 1.7 with OpenCV.

Detailed enviroment requirment can be found in requirement.txt in each code folder.

For convenience, we provide a Nvidia docker image to run our code.

Download Docker Image

Pretrained Models

We provide pretrained models for all modalities to reproduce our submitted results. Please download them at and put them into corresponding folders.

Download Pretrained Models

Usage

Reproducing the Results Submitted to CVPR21 Challenge

To test our pretrained model, please put them under each code folders and run the test code as instructed below. To ensemble the tested results and reproduce our final submission. Please copy all the results .pkl files to ensemble/ and follow the instruction to ensemble our final outputs.

For a step-by-step instruction, please see reproduce.md.

Skeleton Keypoints

Skeleton modality can be trained, finetuned and tested using the code in SL-GCN/ folder. Please follow the SL-GCN/readme.md instruction to prepare skeleton data into four streams (joint, bone, joint_motion, bone motion).

Basic usage:

python main.py --config /path/to/config/file

To train, finetune and test our models, please change the config path to corresponding config files. Detailed instruction can be found in SL-GCN/readme.md

Skeleton Feature

For the skeleton feature, we propose a Separable Spatial-Temporal Convolution Network (SSTCN) to capture spatio-temporal information from those features.

Please follow the instruction in SSTCN/readme.txt to prepare the data, train and test the model.

RGB Frames

The RGB frames modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_clip.py

python Sign_Isolated_Conv3D_clip_finetune.py

python Sign_Isolated_Conv3D_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Optical Flow

The RGB optical flow modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_flow_clip.py

python Sign_Isolated_Conv3D_flow_clip_funtine.py

python Sign_Isolated_Conv3D_flow_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Depth HHA

The Depth HHA modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_hha_clip_mask.py

python Sign_Isolated_Conv3D_hha_clip_mask_finetune.py

python Sign_Isolated_Conv3D_hha_clip_mask_test.py

Detailed instruction can be found in Conv3D/readme.md

Depth Flow

The Depth Flow modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_depth_flow_clip.py

python Sign_Isolated_Conv3D_depth_flow_clip_finetune.py

python Sign_Isolated_Conv3D_depth_flow_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Model Ensemble

For both RGB and RGBD track, the tested results of all modalities need to be ensemble together to generate the final results.

  1. For RGB track, we use the results from skeleton, skeleton feature, rgb, and flow color modalities to ensemble the final results.

    a. Test the model using newly trained weights or provided pretrained weights.

    b. Copy all the test results to ensemble folder and rename them as their modality names.

    c. Ensemble SL-GCN results from joint, bone, joint motion, bone motion streams in gcn/ .

     python ensemble_wo_val.py; python ensemble_finetune.py
    

    c. Copy test_gcn_w_val_finetune.pkl to ensemble/. Copy RGB, TPose and optical flow results to ensemble/. Ensemble final prediction.

     python ensemble_multimodal_rgb.py
    

    Final predictions are saved in predictions.csv

  2. For RGBD track, we use the results from skeleton, skeleton feature, rgb, flow color, hha and flow depth modalities to ensemble the final results. a. copy hha and flow depth modalities to ensemble/ folder, then

     python ensemble_multimodal_rgb.py
    

To reproduce our results in CVPR21Challenge, we provide .pkl files to ensemble and obtain our final submitted predictions. Detailed instruction can be find in ensemble/readme.md

License

Licensed under the Creative Commons Zero v1.0 Universal license with the following exceptions:

  • The code is released for academic research use only. Commercial use is prohibited.
  • Published versions (changed or unchanged) must include a reference to the origin of the code.

Citation

If you find this project useful in your research, please cite our paper

@inproceedings{jiang2021skeleton,
  title={Skeleton Aware Multi-modal Sign Language Recognition},
  author={Jiang, Songyao and Sun, Bin and Wang, Lichen and Bai, Yue and Li, Kunpeng and Fu, Yun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  year={2021}
}

@article{jiang2021skeleton,
  title={Skeleton Aware Multi-modal Sign Language Recognition},
  author={Jiang, Songyao and Sun, Bin and Wang, Lichen and Bai, Yue and Li, Kunpeng and Fu, Yun},
  journal={arXiv preprint arXiv:2103.08833},
  year={2021}
}

Reference

https://github.com/Sun1992/SSTCN-for-SLR

https://github.com/jin-s13/COCO-WholeBody

https://github.com/open-mmlab/mmpose

https://github.com/0aqz0/SLR

https://github.com/kchengiva/DecoupleGCN-DropGraph

https://github.com/HRNet/HRNet-Human-Pose-Estimation

https://github.com/charlesCXK/Depth2HHA

Owner
Isen (Songyao Jiang)
Isen (Songyao Jiang)
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022