Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

Related tags

Deep LearningImagine
Overview

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

This repo contains the code base of the paper Language as a Cognitive Tool to Imagine Goals inCuriosity-Driven Exploration:

Colas, C., Karch, T., Lair, N., Dussoux, J. M., Moulin-Frier, C., Dominey, P. F., & Oudeyer, P. Y. (2020). Language as a Cognitive Tool to Imagine Goals in Curiosity-Driven Exploration, Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020).

Context

Learning open-ended repertoire of skills requires agents that autonomously explore their environments. To do so, they need to self-organize their exploration by generating and selecting their goals (IMGEP). In this framework, how can agents make creative discoveries?

In this paper, we propose to equip agents with language grounding capabilities in order to represent goals as language. We then leverage language compositionality and systematic generalization as a means to perform out-of-distribution goal generation.

We follow a developmental approach inspired by the role of egocentric language in child development (Piaget and Vygotsky) and generative expressivity (Chomsky).

Notebook

We propose a Google Colab Notebook to walk you through the IMAGINE learning algorithm. The notebook contains:

  • a full decomposition of the IMAGINE architecture
  • visualizations of the modules' behavior during inference
  • interactive generations of rollouts conditioned on goal sentences

Requirements

The dependencies are listed in the requirements.txt file. Our conda environment can be cloned with:

conda env create -f environment.yml

Demo

The demo script is /src/imagine/experiments/play.py. It can be used as such:

python play.py

RL training

Running the algorithm

The main running script is /src/imagine/experiments/train.py. It can be used as such:

python train.py --num_cpu=6 --architecture=modular_attention --imagination_method=CGH --reward_function=learned_lstm  --goal_invention=from_epoch_10 --n_epochs=167

Note that the number of cpu is an important parameter. Changing it is not equivalent to reducing/increasing training time. One epoch is 600 episodes. Other parameters can be found in train.py. The config.py file contains all parameters and is overriden by parameters defined in train.py.

Logs and results are saved in /src/data/expe/PlaygroundNavigation-v1/trial_id/. It contains policy and reward function checkpoints, raw logs (log.txt), a csv containing main metrics (progress.csv) and a json file with the parameters (params.json).

Plotting results

Results for one run can be plotted using the script /src/analyses/new_plot.py

Links

Citation

@article{colas2020language,
	title={Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration},
	author={Colas, Cédric and Karch, Tristan and Lair, Nicolas and Dussoux, Jean-Michel and Moulin-Frier, Clément and Dominey, F Peter and Oudeyer, Pierre-Yves},
	journal={NeurIPS 2020},
	year={2020}
}
Owner
Flowers Team
Flowers Team
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022