CoRe: Contrastive Recurrent State-Space Models

Related tags

Deep Learningml-core
Overview

CoRe: Contrastive Recurrent State-Space Models

This code implements the CoRe model and reproduces experimental results found in
Robust Robotic Control from Pixels using Contrastive Recurrent State-Space models
NeurIPS Deep Reinforcement Learning Workshop 2021
Nitish Srivastava, Walter Talbott, Martin Bertran Lopez, Shuangfei Zhai & Joshua M. Susskind
[paper]

cartpole

cheetah

walker

Requirements and Installation

Clone this repository and then execute the following steps. See setup.sh for an example of how to run these steps on a Ubuntu 18.04 machine.

  • Install dependencies.

    apt install -y libgl1-mesa-dev libgl1-mesa-glx libglew-dev \
            libosmesa6-dev software-properties-common net-tools unzip \
            virtualenv wget xpra xserver-xorg-dev libglfw3-dev patchelf xvfb ffmpeg
    
  • Download the DAVIS 2017 dataset. Make sure to select the 2017 TrainVal - Images and Annotations (480p). The training images will be used as distracting backgrounds. The DAVIS directory should be in the same directory as the code. Check that ls ./DAVIS/JPEGImages/480p/... shows 90 video directories.

  • Install MuJoCo 2.1.

    • Download MuJoCo version 2.1 binaries for Linux or macOS.
    • Unzip the downloaded mujoco210 directory into ~/.mujoco/mujoco210.
  • Install MuJoCo 2.0 (For robosuite experiments only).

    • Download MuJoCo version 2.0 binaries for Linux or macOS.
    • Unzip the downloaded directory and move it into ~/.mujoco/.
    • Symlink mujoco200_linux (or mujoco200_macos) to mujoco200.
    ln -s ~/.mujoco/mujoco200_linux ~/.mujoco/mujoco200
    
    • Place the license key at ~/.mujoco/mjkey.txt.
    • Add the MuJoCo binaries to LD_LIBRARY_PATH.
    export LD_LIBRARY_PATH=$HOME/.mujoco/mujoco200/bin:$LD_LIBRARY_PATH
    
  • Setup EGL GPU rendering (if a GPU is available).

    • To ensure that the GPU is prioritized over the CPU for EGL rendering
    cp 10_nvidia.json /usr/share/glvnd/egl_vendor.d/
    
    • Create a dummy nvidia directory so that mujoco_py builds the extensions needed for GPU rendering.
    mkdir -p /usr/lib/nvidia-000
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia-000
    
  • Create a conda environment.

    For Distracting Control Suite

    conda env create -f conda_env.yml
    

    For Robosuite

    conda env create -f conda_env_robosuite.yml
    

Training

  • The CoRe model can be trained on the Distracting Control Suite as follows:

    conda activate core
    MUJOCO_GL=egl CUDA_VISIBLE_DEVICES=0 python train.py --config configs/dcs/core.yaml 
    

The training artifacts, including tensorboard logs and videos of validation rollouts will be written in ./artifacts/.

To change the distraction setting, modify the difficulty parameter in configs/dcs/core.yaml. Possible values are ['easy', 'medium', 'hard', 'none', 'hard_bg'].

To change the domain, modify the domain parameter in configs/dcs/core.yaml. Possible values are ['ball_in_cup', 'cartpole', 'cheetah', 'finger', 'reacher', 'walker'].

  • To train on Robosuite (Door Task, Franka Panda Arm)

    • Using RGB image and proprioceptive inputs.
    conda activate core_robosuite
    MUJOCO_GL=egl CUDA_VISIBLE_DEVICES=0 python train.py --config configs/robosuite/core.yaml
    
    • Using RGB image inputs only.
    conda activate core_robosuite
    MUJOCO_GL=egl CUDA_VISIBLE_DEVICES=0 python train.py --config configs/robosuite/core_imageonly.yaml
    

Citation

@article{srivastava2021core,
    title={Robust Robotic Control from Pixels using Contrastive Recurrent State-Space Models}, 
    author={Nitish Srivastava and Walter Talbott and Martin Bertran Lopez and Shuangfei Zhai and Josh Susskind},
    journal={NeurIPS Deep Reinforcement Learning Workshop},
    year={2021}
}

License

This code is released under the LICENSE terms.

Owner
Apple
Apple
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022