PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

Overview

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

The electric grid is a key enabling infrastructure for the ambitious transition towards carbon neutrality as we grapple with climate change. With deepening penetration of renewable energy resources and electrified transportation, the reliable and secure operation of the electric grid becomes increasingly challenging. In this paper, we present PSML, a first-of-its-kind open-access multi-scale time-series dataset, to aid in the development of data-driven machine learning (ML) based approaches towards reliable operation of future electric grids. The dataset is generated through a novel transmission + distribution (T+D) co-simulation designed to capture the increasingly important interactions and uncertainties of the grid dynamics, containing electric load, renewable generation, weather, voltage and current measurements at multiple spatio-temporal scales. Using PSML, we provide state-of-the-art ML baselines on three challenging use cases of critical importance to achieve: (i) early detection, accurate classification and localization of dynamic disturbance events; (ii) robust hierarchical forecasting of load and renewable energy with the presence of uncertainties and extreme events; and (iii) realistic synthetic generation of physical-law-constrained measurement time series. We envision that this dataset will enable advances for ML in dynamic systems, while simultaneously allowing ML researchers to contribute towards carbon-neutral electricity and mobility.

Dataset Navigation

We put Full dataset in Zenodo. Please download, unzip and put somewhere for later benchmark results reproduction and data loading and performance evaluation for proposed methods.

wget https://zenodo.org/record/5130612/files/PSML.zip?download=1
7z x 'PSML.zip?download=1' -o./

Minute-level Load and Renewable

  • File Name
    • ISO_zone_#.csv: CAISO_zone_1.csv contains minute-level load, renewable and weather data from 2018 to 2020 in the zone 1 of CAISO.
  • Field Description
    • Field time: Time of minute resolution.
    • Field load_power: Normalized load power.
    • Field wind_power: Normalized wind turbine power.
    • Field solar_power: Normalized solar PV power.
    • Field DHI: Direct normal irradiance.
    • Field DNI: Diffuse horizontal irradiance.
    • Field GHI: Global horizontal irradiance.
    • Field Dew Point: Dew point in degree Celsius.
    • Field Solar Zeinth Angle: The angle between the sun's rays and the vertical direction in degree.
    • Field Wind Speed: Wind speed (m/s).
    • Field Relative Humidity: Relative humidity (%).
    • Field Temperature: Temperature in degree Celsius.

Minute-level PMU Measurements

  • File Name
    • case #: The case 0 folder contains all data of scenario setting #0.
      • pf_input_#.txt: Selected load, renewable and solar generation for the simulation.
      • pf_result_#.csv: Voltage at nodes and power on branches in the transmission system via T+D simualtion.
  • Filed Description
    • Field time: Time of minute resolution.
    • Field Vm_###: Voltage magnitude (p.u.) at the bus ### in the simulated model.
    • Field Va_###: Voltage angle (rad) at the bus ### in the simulated model.
    • Field P_#_#_#: P_3_4_1 means the active power transferring in the #1 branch from the bus 3 to 4.
    • Field Q_#_#_#: Q_5_20_1 means the reactive power transferring in the #1 branch from the bus 5 to 20.

Millisecond-level PMU Measurements

  • File Name
    • Forced Oscillation: The folder contains all forced oscillation cases.
      • row_#: The folder contains all data of the disturbance scenario #.
        • dist.csv: Three-phased voltage at nodes in the distribution system via T+D simualtion.
        • info.csv: This file contains the start time, end time, location and type of the disturbance.
        • trans.csv: Voltage at nodes and power on branches in the transmission system via T+D simualtion.
    • Natural Oscillation: The folder contains all natural oscillation cases.
      • row_#: The folder contains all data of the disturbance scenario #.
        • dist.csv: Three-phased voltage at nodes in the distribution system via T+D simualtion.
        • info.csv: This file contains the start time, end time, location and type of the disturbance.
        • trans.csv: Voltage at nodes and power on branches in the transmission system via T+D simualtion.
  • Filed Description

    trans.csv

    • Field Time(s): Time of millisecond resolution.
    • Field VOLT ###: Voltage magnitude (p.u.) at the bus ### in the transmission model.
    • Field POWR ### TO ### CKT #: POWR 151 TO 152 CKT '1 ' means the active power transferring in the #1 branch from the bus 151 to 152.
    • Field VARS ### TO ### CKT #: VARS 151 TO 152 CKT '1 ' means the reactive power transferring in the #1 branch from the bus 151 to 152.

    dist.csv

    • Field Time(s): Time of millisecond resolution.
    • Field ####.###.#: 3005.633.1 means per-unit voltage magnitude of the phase A at the bus 633 of the distribution grid, the one connecting to the bus 3005 in the transmission system.

Installation

  • Install PSML from source.
git clone https://github.com/tamu-engineering-research/Open-source-power-dataset.git
  • Create and activate anaconda virtual environment
conda create -n PSML python=3.7.10
conda activate PSML
  • Install required packages
pip install -r ./Code/requirements.txt

Package Usage

We've prepared the standard interfaces of data loaders and evaluators for all of the three time series tasks:

(1) Data loaders

We prepare the following Pytorch data loaders, with both data processing and splitting included. You can easily load data with a few lines for different tasks by simply modifying the task parameter.

from Code.dataloader import TimeSeriesLoader

loader = TimeSeriesLoader(task='forecasting', root='./PSML') # suppose the raw dataset is downloaded and unzipped under Open-source-power-dataset
train_loader, test_loader = loader.load(batch_size=32, shuffle=True)

(2) Evaluators

We also provide evaluators to support fair comparison among different approaches. The evaluator receives the dictionary input_dict (we specify key and value format of different tasks in evaluator.expected_input_format), and returns another dictionary storing the performance measured by task-specific metrics (explanation of key and value can be found in evaluator.expected_output_format).

from Code.evaluator import TimeSeriesEvaluator
evaluator = TimeSeriesEvaluator(task='classification', root='./PSML') # suppose the raw dataset is downloaded and unzipped under Open-source-power-dataset
# learn the appropriate format of input_dict
print(evaluator.expected_input_format) # expected input_dict format
print(evaluator.expected_output_format) # expected output dict format
# prepare input_dict
input_dict = {
    'classification': classfication,
    'localization': localization,
    'detection': detection,
}
result_dict = evaluator.eval(input_dict)
# sample output: {'#samples': 110, 'classification': 0.6248447204968943, 'localization': 0.08633372048006195, 'detection': 42.59349593495935}

Code Navigation

Please see detailed explanation and comments in each subfolder.

  • BenchmarkModel
    • EventClassification: baseline models for event detection, classification and localization
    • LoadForecasting: baseline models for hierarchical load and renewable point forecast and prediction interval
    • Synthetic Data Generation: baseline models for synthetic data generation of physical-laws-constrained PMU measurement time series
  • Joint Simulation: python codes for joint steady-state and transient simulation between transmission and distribution systems
  • Data Processing: python codes for collecting the real-world load and weather data

License

The PSML dataset is published under CC BY-NC 4.0 license, meaning everyone can use it for non-commercial research purpose.

Suggested Citation

  • Please cite the following paper when you use this data hub:
    X. Zheng, N. Xu, L. Trinh, D. Wu, T. Huang, S. Sivaranjani, Y. Liu, and L. Xie, "PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids." (2021).

Contact

Please contact us if you need further technical support or search for cooperation. Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Email contact:   Le Xie,   Yan Liu,   Xiangtian Zheng,   Nan Xu,   Dongqi Wu,   Loc Trinh,   Tong Huang,   S. Sivaranjani.

You might also like...
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

 Learning Energy-Based Models by Diffusion Recovery Likelihood
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

A PyTorch implementation of
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Releases(v1.0.0)
  • v1.0.0(Nov 10, 2021)

    The electric grid is a key enabling infrastructure for the ambitious transition towards carbon neutrality as we grapple with climate change. With deepening penetration of renewable energy resources and electrified transportation, the reliable and secure operation of the electric grid becomes increasingly challenging. In this paper, we present PSML, a first-of-its-kind open-access multi-scale time-series dataset, to aid in the development of data-driven machine learning based approaches towards reliable operation of future electric grids. The dataset is generated through a novel transmission + distribution co-simulation designed to capture the increasingly important interactions and uncertainties of the grid dynamics, containing electric load, renewable generation, weather, voltage and current measurements at multiple spatio-temporal scales. Using PSML, we provide state-of-the-art ML baselines on three challenging use cases of critical importance to achieve: (i) early detection, accurate classification and localization of dynamic disturbance events; (ii) robust hierarchical forecasting of load and renewable energy with the presence of uncertainties and extreme events; and (iii) realistic synthetic generation of physical-law-constrained measurement time series. We envision that this dataset will provide use-inspired ML research in dynamic safety-critical systems, while simultaneously enabling ML researchers to contribute towards decarbonization of energy sectors.

    Source code(tar.gz)
    Source code(zip)
Owner
Texas A&M Engineering Research
Texas A&M Engineering Research
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022