PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

Overview

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

The electric grid is a key enabling infrastructure for the ambitious transition towards carbon neutrality as we grapple with climate change. With deepening penetration of renewable energy resources and electrified transportation, the reliable and secure operation of the electric grid becomes increasingly challenging. In this paper, we present PSML, a first-of-its-kind open-access multi-scale time-series dataset, to aid in the development of data-driven machine learning (ML) based approaches towards reliable operation of future electric grids. The dataset is generated through a novel transmission + distribution (T+D) co-simulation designed to capture the increasingly important interactions and uncertainties of the grid dynamics, containing electric load, renewable generation, weather, voltage and current measurements at multiple spatio-temporal scales. Using PSML, we provide state-of-the-art ML baselines on three challenging use cases of critical importance to achieve: (i) early detection, accurate classification and localization of dynamic disturbance events; (ii) robust hierarchical forecasting of load and renewable energy with the presence of uncertainties and extreme events; and (iii) realistic synthetic generation of physical-law-constrained measurement time series. We envision that this dataset will enable advances for ML in dynamic systems, while simultaneously allowing ML researchers to contribute towards carbon-neutral electricity and mobility.

Dataset Navigation

We put Full dataset in Zenodo. Please download, unzip and put somewhere for later benchmark results reproduction and data loading and performance evaluation for proposed methods.

wget https://zenodo.org/record/5130612/files/PSML.zip?download=1
7z x 'PSML.zip?download=1' -o./

Minute-level Load and Renewable

  • File Name
    • ISO_zone_#.csv: CAISO_zone_1.csv contains minute-level load, renewable and weather data from 2018 to 2020 in the zone 1 of CAISO.
  • Field Description
    • Field time: Time of minute resolution.
    • Field load_power: Normalized load power.
    • Field wind_power: Normalized wind turbine power.
    • Field solar_power: Normalized solar PV power.
    • Field DHI: Direct normal irradiance.
    • Field DNI: Diffuse horizontal irradiance.
    • Field GHI: Global horizontal irradiance.
    • Field Dew Point: Dew point in degree Celsius.
    • Field Solar Zeinth Angle: The angle between the sun's rays and the vertical direction in degree.
    • Field Wind Speed: Wind speed (m/s).
    • Field Relative Humidity: Relative humidity (%).
    • Field Temperature: Temperature in degree Celsius.

Minute-level PMU Measurements

  • File Name
    • case #: The case 0 folder contains all data of scenario setting #0.
      • pf_input_#.txt: Selected load, renewable and solar generation for the simulation.
      • pf_result_#.csv: Voltage at nodes and power on branches in the transmission system via T+D simualtion.
  • Filed Description
    • Field time: Time of minute resolution.
    • Field Vm_###: Voltage magnitude (p.u.) at the bus ### in the simulated model.
    • Field Va_###: Voltage angle (rad) at the bus ### in the simulated model.
    • Field P_#_#_#: P_3_4_1 means the active power transferring in the #1 branch from the bus 3 to 4.
    • Field Q_#_#_#: Q_5_20_1 means the reactive power transferring in the #1 branch from the bus 5 to 20.

Millisecond-level PMU Measurements

  • File Name
    • Forced Oscillation: The folder contains all forced oscillation cases.
      • row_#: The folder contains all data of the disturbance scenario #.
        • dist.csv: Three-phased voltage at nodes in the distribution system via T+D simualtion.
        • info.csv: This file contains the start time, end time, location and type of the disturbance.
        • trans.csv: Voltage at nodes and power on branches in the transmission system via T+D simualtion.
    • Natural Oscillation: The folder contains all natural oscillation cases.
      • row_#: The folder contains all data of the disturbance scenario #.
        • dist.csv: Three-phased voltage at nodes in the distribution system via T+D simualtion.
        • info.csv: This file contains the start time, end time, location and type of the disturbance.
        • trans.csv: Voltage at nodes and power on branches in the transmission system via T+D simualtion.
  • Filed Description

    trans.csv

    • Field Time(s): Time of millisecond resolution.
    • Field VOLT ###: Voltage magnitude (p.u.) at the bus ### in the transmission model.
    • Field POWR ### TO ### CKT #: POWR 151 TO 152 CKT '1 ' means the active power transferring in the #1 branch from the bus 151 to 152.
    • Field VARS ### TO ### CKT #: VARS 151 TO 152 CKT '1 ' means the reactive power transferring in the #1 branch from the bus 151 to 152.

    dist.csv

    • Field Time(s): Time of millisecond resolution.
    • Field ####.###.#: 3005.633.1 means per-unit voltage magnitude of the phase A at the bus 633 of the distribution grid, the one connecting to the bus 3005 in the transmission system.

Installation

  • Install PSML from source.
git clone https://github.com/tamu-engineering-research/Open-source-power-dataset.git
  • Create and activate anaconda virtual environment
conda create -n PSML python=3.7.10
conda activate PSML
  • Install required packages
pip install -r ./Code/requirements.txt

Package Usage

We've prepared the standard interfaces of data loaders and evaluators for all of the three time series tasks:

(1) Data loaders

We prepare the following Pytorch data loaders, with both data processing and splitting included. You can easily load data with a few lines for different tasks by simply modifying the task parameter.

from Code.dataloader import TimeSeriesLoader

loader = TimeSeriesLoader(task='forecasting', root='./PSML') # suppose the raw dataset is downloaded and unzipped under Open-source-power-dataset
train_loader, test_loader = loader.load(batch_size=32, shuffle=True)

(2) Evaluators

We also provide evaluators to support fair comparison among different approaches. The evaluator receives the dictionary input_dict (we specify key and value format of different tasks in evaluator.expected_input_format), and returns another dictionary storing the performance measured by task-specific metrics (explanation of key and value can be found in evaluator.expected_output_format).

from Code.evaluator import TimeSeriesEvaluator
evaluator = TimeSeriesEvaluator(task='classification', root='./PSML') # suppose the raw dataset is downloaded and unzipped under Open-source-power-dataset
# learn the appropriate format of input_dict
print(evaluator.expected_input_format) # expected input_dict format
print(evaluator.expected_output_format) # expected output dict format
# prepare input_dict
input_dict = {
    'classification': classfication,
    'localization': localization,
    'detection': detection,
}
result_dict = evaluator.eval(input_dict)
# sample output: {'#samples': 110, 'classification': 0.6248447204968943, 'localization': 0.08633372048006195, 'detection': 42.59349593495935}

Code Navigation

Please see detailed explanation and comments in each subfolder.

  • BenchmarkModel
    • EventClassification: baseline models for event detection, classification and localization
    • LoadForecasting: baseline models for hierarchical load and renewable point forecast and prediction interval
    • Synthetic Data Generation: baseline models for synthetic data generation of physical-laws-constrained PMU measurement time series
  • Joint Simulation: python codes for joint steady-state and transient simulation between transmission and distribution systems
  • Data Processing: python codes for collecting the real-world load and weather data

License

The PSML dataset is published under CC BY-NC 4.0 license, meaning everyone can use it for non-commercial research purpose.

Suggested Citation

  • Please cite the following paper when you use this data hub:
    X. Zheng, N. Xu, L. Trinh, D. Wu, T. Huang, S. Sivaranjani, Y. Liu, and L. Xie, "PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids." (2021).

Contact

Please contact us if you need further technical support or search for cooperation. Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Email contact:   Le Xie,   Yan Liu,   Xiangtian Zheng,   Nan Xu,   Dongqi Wu,   Loc Trinh,   Tong Huang,   S. Sivaranjani.

You might also like...
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

 Learning Energy-Based Models by Diffusion Recovery Likelihood
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

A PyTorch implementation of
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Releases(v1.0.0)
  • v1.0.0(Nov 10, 2021)

    The electric grid is a key enabling infrastructure for the ambitious transition towards carbon neutrality as we grapple with climate change. With deepening penetration of renewable energy resources and electrified transportation, the reliable and secure operation of the electric grid becomes increasingly challenging. In this paper, we present PSML, a first-of-its-kind open-access multi-scale time-series dataset, to aid in the development of data-driven machine learning based approaches towards reliable operation of future electric grids. The dataset is generated through a novel transmission + distribution co-simulation designed to capture the increasingly important interactions and uncertainties of the grid dynamics, containing electric load, renewable generation, weather, voltage and current measurements at multiple spatio-temporal scales. Using PSML, we provide state-of-the-art ML baselines on three challenging use cases of critical importance to achieve: (i) early detection, accurate classification and localization of dynamic disturbance events; (ii) robust hierarchical forecasting of load and renewable energy with the presence of uncertainties and extreme events; and (iii) realistic synthetic generation of physical-law-constrained measurement time series. We envision that this dataset will provide use-inspired ML research in dynamic safety-critical systems, while simultaneously enabling ML researchers to contribute towards decarbonization of energy sectors.

    Source code(tar.gz)
    Source code(zip)
Owner
Texas A&M Engineering Research
Texas A&M Engineering Research
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022