Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Related tags

Deep LearningSimIPU
Overview

Official Implementation of SimIPU

  • SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations
  • Since the code is still waiting for release, if you have any question with reproduction, feel free to contact us. We will try our best to help you.
  • Currently, the core code of SimIPU is implemented in the commercial project. We are trying our best to make the code publicly available.
Comments
  • Question about augmentation

    Question about augmentation

    Hi, I'm a little confused about the data augmentation.

    1. How did you set img_aug when img_moco=True? It seems that we need an 'img_pipeline' in 'simipu_kitti.py', right?
    2. For 3D augmentation, it seems that it is done in this line. So the 3D augmentation is done based on the point features instead the raw points, right? If I want to try moco=True, how to set 3D augmentation? should I do this in the dataset building part? https://github.com/zhyever/SimIPU/blob/5b346e392c161a5e9fdde09b1692656bc7cd3faf/project_cl/decorator/inter_intro_decorator_moco_better.py#L394

    Looking forward to your reply. Many thanks.

    opened by sunnyHelen 2
  • error for env setup:ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query'

    error for env setup:ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query'

    Thanks for your insightful paper and clear code repo!

    Hi, I met with the ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query' when run the command bash tools/dist_train.sh project_cl/configs/simipu/simipu_kitti.py 1 --work_dir ./

    Do you know how to solve it?

    Traceback (most recent call last): File "tools/train.py", line 16, in from mmdet3d.apis import train_model File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/apis/init.py", line 1, in from .inference import (convert_SyncBN, inference_detector, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/apis/inference.py", line 10, in from mmdet3d.core import (Box3DMode, DepthInstance3DBoxes, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/init.py", line 2, in from .bbox import * # noqa: F401, F403 File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/init.py", line 4, in from .iou_calculators import (AxisAlignedBboxOverlaps3D, BboxOverlaps3D, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/iou_calculators/init.py", line 1, in from .iou3d_calculator import (AxisAlignedBboxOverlaps3D, BboxOverlaps3D, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/iou_calculators/iou3d_calculator.py", line 5, in from ..structures import get_box_type File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/structures/init.py", line 1, in from .base_box3d import BaseInstance3DBoxes File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/structures/base_box3d.py", line 5, in from mmdet3d.ops.iou3d import iou3d_cuda File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/init.py", line 5, in from .ball_query import ball_query File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/init.py", line 1, in from .ball_query import ball_query File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/ball_query.py", line 4, in from . import ball_query_ext ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query' (/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/init.py)

    I noticed that you once met with the same error. https://github.com/open-mmlab/mmdetection3d/issues/503#issuecomment-847618114

    So, I would like to ask for your help~ Hopefully you have a good solution. :)

    opened by JerryX1110 2
  • A question about eq5 and eq6

    A question about eq5 and eq6

    Thanks for your inspiring work. I have some wonder about eq5 and eq6. As far as I know, After eq5, f should be a tensor which is a global feature with shape (batchsize * 2048 * 1 * 1), how can you sample corresponding image features by projection location? After all, there's no spatial information in f anymore. Or maybe you got features from a previous layer of ResNet? Looking forward to your reply.

    opened by lianchengmingjue 2
  • A question about Tab.5 in Ablation Study

    A question about Tab.5 in Ablation Study

    Thanks for your excellent work first! I have a question about Tab.5 in Ablation Study. Why "Scratch" equals "SimIPU w/o inter-module ", which means that the intra-module is useless?

    opened by Trent-tangtao 1
  • Have you tried not to crop gradient of f^{\alpha} in eq7?

    Have you tried not to crop gradient of f^{\alpha} in eq7?

    Hi, I like your good work! I am wondering have you tried not to crop the gradient of $f^{\alpha}$ in eq7? If you crop the gradient, it seems like the pertaining of the point branch cannot learn anything from the image branch.

    opened by Hiusam 1
  • issues about create_data

    issues about create_data

    Hi, thanks for sharing your great work. I encounter some issues during creating data by running create_data.py First create reduced point cloud for training set [ ] 0/3712, elapsed: 0s, ETA:Traceback (most recent call last): File "tools/create_data.py", line 247, in
    out_dir=args.out_dir)
    File "tools/create_data.py", line 24, in kitti_data_prep
    kitti.create_reduced_point_cloud(root_path, info_prefix)
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/kitti_converter.py", line 374, in create_reduced_point_cloud
    _create_reduced_point_cloud(data_path, train_info_path, save_path)
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/kitti_converter.py", line 314, in _create_reduced_point_cloud
    count=-1).reshape([-1, num_features])
    ValueError: cannot reshape array of size 461536 into shape (6)

    It seems to set the num_features=4 and front_camera_id=2? in this line: https://github.com/zhyever/SimIPU/blob/5b346e392c161a5e9fdde09b1692656bc7cd3faf/tools/data_converter/kitti_converter.py#L291

    I assume doing this can solve the problem but encounter another problem when Create GT Database of KittiDataset
    [ ] 0/3712, elapsed: 0s, ETA:Traceback (most recent call last):
    File "tools/create_data.py", line 247, in
    out_dir=args.out_dir)
    File "tools/create_data.py", line 44, in kitti_data_prep
    with_bbox=True) # for moca
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/create_gt_database.py", line 275, in create_groundtruth_database
    P0 = np.array(example['P0']).reshape(4, 4)
    KeyError: 'P0'

    Can you help me figure out how to solve these issues?

    opened by sunnyHelen 21
Owner
Zhyever
Keep going.
Zhyever
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022