Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Overview

Occlusion Robust 3D face Reconstruction

Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee

Code for Occlusion Robust 3D Face Reconstruction in "Complete Face Recovery GAN: Unsupervised Joint Face Rotation and De-Occlusion from a Single-View Image (WACV 2022)"

We propose our novel two stage fine-tuning strategy for occlusion-robust 3D face reconstruction. The training method is split into two training stages due to the difficulty of initial training for extreme occlusions. We fine-tune the baseline with our newly created datasets in the first stage and with teacher-student learning method in the second stage.

Our baseline is Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set and we also referred this code. Note that we focus on alignments and colors for guidance of CFR-GAN in occluded facial images.

Requirements


Usage


Preprocessing:

Prepare your own dataset for data augmentation. The datasets used in this paper can be downloaded in follows:

Except when the dataset has facial landmarks labels, you should predict facial landmarks. We recommend using 3DDFA v2. If you want to reduce error propagation of the facial alignment networks, prepend a flag to filename. (ex) "pred"+[filename])

In order to train occlusion-robust 3D face model, occluded face image datasets are essential, but they are absent. So, we create datasets by synthesizing the hand-shape mask.

python create_train_stage1.py --img_path [your image folder] --lmk_path [your landmarks folder] --save_path [path to save]

For first training stage, prepare occluded (augmented images), ori_img (original images), landmarks (3D landmarks) folders or modify folder name in train_stage1.py.

**You must align images with align.py**

meta file format is:

[filename] left eye x left eye y right eye x right eye y nose x nose y left mouth x left mouth y ...

You can use MTCNN or RetinaFace

First Fine-tuning Stage:

Instead of skin mask, we use BiseNet, face parsing network. The codes and weights were modified and re-trained from this code.

Train occlusion-robust 3D face model

python train_stage1.py

To show logs

tensorboard --logdir=logs_stage1 --bind_all --reload_multifile True

Second Fine-tuning Stage:

  • You can download MaskedFaceNet dataset in here.
  • You can download FFHQ dataset in here.

Train

python train_stage2.py

To show logs

tensorboard --logdir=logs_stage2 --bind_all --reload_multifile True

Evaluation

python evaluation/benchmark_nme_aflw_2000.py

If you would like to evaluate your results, please refer evaluation/estimate_aflw2000.py

Owner
Yeongjoon
Yeongjoon
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022