Data-depth-inference - Data depth inference with python

Overview

Welcome!

This readme will guide you through the use of the code in this repository.

The code in this repository is for nonparametric prior-free and likelihood-free posterior inference.

We named this method: Inference with consonant structures via data peeling

As the name suggests, this method construct consonant confidence structures directly from data using a procedure name data peeling.

When to use this code?

  • The probability distribution of the data-generating mechanism, $P_{X}$ is multivariate (d>2)
  • The distribution family (e.g. lognormal) of $P_{X}$ is unkown
  • $P_{X}$ is stationary
  • $X_{i}, i=1,...,n$ are iid samples drown from $P_{X}$
  • For backward propagation, i.e. $P_{X}$ is the distribution of an output quantity and inference is done on the inputs
  • When uncertainty quantification based solely on data is needed: e.g. computing failure probability based on data only
  • When there is scarcity of data (small sample size), so the inferential (epistemic) uncertainty is predominant
  • The model x=f(y) is not available, but runs of the model can be requested offline
  • When the data has inherent uncertainty, i.e. interval uncertainty

Why use this code?

  • It's nonparametric so there is no need to assume a distribution family
  • It's prior-free so no prior knowledge is needed on the parameters to be inferred
  • It's likelihood-free so no stochastic assumption about the error is made
  • It is fully parallel, so only indipendent evaluations of the model are needed
  • The inferential (epistemic) uncertainty is rigorously quantified
  • The dipendence between the paramters is fully quantified and encoded in the structures

When not to use this code?

  • The sample size of the data set is way larger than its dimension (use parametric inference instead or prior-based inference)
  • $P_{X}$ is highly non-stationary

Unanswered questions

  • How can the assumption of consonance be relaxed to better approximate the credal set?
  • How can we spot precise distributions compatible with the structures that are not in the credal set?
  • How can the peeling procedure be extended to parametric inference?

Extensions and future work

(1) Compute data depths with complex shapes, e.g. using a perceptron representation

(2) Add code for discovering precise probability distribution in the consonant structures

(3) Add code for computing the data depth of box-shaped samples (inherent uncertainty)

References

[1] De Angelis, M., Rocchetta, R., Gray, A., & Ferson, S. (2021). Constructing Consonant Predictive Beliefs from Data with Scenario Theory. Proceedings of Machine Learning Research, 147, 362-362. https://leo.ugr.es/isipta21/pmlr/deangelis21.pdf

[2] https://opensource.org/licenses/MIT

Getting started

First, download or clone this repository on your local machine.

git clone [email protected]:marcodeangelis/data-depth-inference.git

Then change directory cd to the downloaded repository, and open a Python interpreter or Jupyter notebook.

We'll start by importing the code that we need.

from algorithm.peeling import (data_peeling_algorithm,data_peeling_backward,peeling_to_structure,uniform)
from algorithm.plots import (plot_peeling,plot_peeling_nxd,plot_peeling_nxd_back,plot_peeling_nx2,plot_scattermatrix,plot_fuzzy)
from algorithm.fuzzy import (samples_to_fuzzy_projection,boxes_to_fuzzy_projection,coverage_samples)
from algorithm.examples import (pickle_load,pickle_dump,banana_data,banana_model)

Forward inference problem

The forward inference problem consists in targeting $p_{X}$, and characterising the inferential uncertainty of the quantity $X$ that is being observed.

Generating synthetic data

Let us generate n=100 iid samples from some data generating mechanism. We'll then need to forget about the mechanism, as in reality we are not supposed to know what $P_{X}$ looks like.

Each sample $X_i$ is a vector with three components: $X_i \in R^3$, so $d=3$.

X = banana_data(n=100,d=3)

Let us see how this data looks like in a scatter plot:

plot_scattermatrix(X,bins=20,figsize=(10,10))

png

Run the inference algorithm

We can now apply the data-peeling procedure to output the depth of the data set.

a,b = data_peeling_algorithm(X,tol=0.01)
# a: is a list of subindices corresponding to the support vectors
# b: is a list of enclosing sets (boxes by default)

The depth of the data is an integer indicating how many levels there are.

We can now assign to each level a lower probability measure either using scenario theory or c-boxes. We'll set the confidence level to $\beta=0.01$.

f,p = peeling_to_structure(a,b,kind='scenario',beta=0.01)
# f: is a structure containing projections
# p: is a list of lower probability, one for each level

With the enclosing sets and the lower measures associated to them, we can now plot the results

plot_peeling_nxd(X,a,b,p=p,figsize=(12,12))

png

The inference task terminates here.

What next?

(1) We can hypothesise a joint probability distribution $\hat{P}_{X}$ and check if it is contained in the consonant structure.

Then, repeating this procedure we can build a set of compatible distribtions, however there will be no guarantee that these distributions are in the actual credal set. So by doing so we'll lose rigour.

(2) We can use an possibility-to-imprecise-probability transform to turn these structures into p-boxes.

Backward (indirect) inference problem

The backward inference problem targets $P_{Y}$, while characterising the inferential uncertainty of the quantity $X$, which is inderectly been observed via $Y=f(X)$.

In other words, we target $P_{Y}$, while learning $P(X)$, with $Y=f(X)$.

We'll call $f$ a model, for example an engineering model.

Generating synthetic data

Again we'll generate n=100 iid samples from some data generating mechanism $P_{Y}$. Each sample $Y_i$ is a vector with two components: $Y_i \in R^2$, so $d=2$.

However, this time we are going to need to know the model $f$ that links the input space $X$ with the output space $Y$.

The model is as follows: $f:R^3 -> R^2$, so each sample in the input space is a vector with three components: $X_i \in R^3$, so $d_=3$.

For simplicity and without loss of generality we'll assume that the model $f$ is the correct one. So $Y_i$ will be generated via the function itself.

Let us define the model as described above, so: $y = (3 x_1 * x_3,\ x_1^2 + x_2)$.

In code the expression looks:

import numpy
def f(x):
    d=2
    n,d_ = x.shape
    y = numpy.empty((n,d),dtype=float)
    y[:,0], y[:,1] = x[:,0]*3 + x[:,2], x[:,0]**2 + x[:,1] 
    return y

Now we generate n=100 random data for $X$ and pass it through $f$ to obtain our data $Y_i$.

import scipy.stats as stats
n, d_ = 100, 3
X_proxy = stats.norm(loc=0,scale=2).rvs((n,d_))
Y = f(X_proxy) # <- this is our target

Run the inference algorithm

We can now run the backward inference procedure.

Step 1: Bound the input space

Define bounds of the input space where it is expected the indirect observations to be placed.

Clues may come from the physics of the problem under study.

x_lo, x_hi = d_*[-10], d_*[10]

Step 2: Cover the input space with evenly spaces samples

Ideally these samples are generated using a low-discrepancy sampling scheme.

We'll use 100 000 samples for this example.

ux = uniform(x_lo, x_hi, N=100_000)
uy.shape # prints (100000,3)

Step 3: Evaluate the model on the coverage samples

This step is the most computationally expensive, and should be done offline and if possible and needed in parallel.

Luckily this evaluation depends only on the bounds (previous step) and need not be repeated if the bounds don't change or the model doesn't change.

uy = f(ux)
uy.shape # prints (100000,2)

Step 4: Compute data depth of $Y$

In practice, we run the forward data-peeling algorithm for $Y$, subindexing the coverage samples in the output space.

a,b,c = data_peeling_backward(uy,Y,tol=1e-1)
# a: a list of subindices corresponding to the support vectors
# b: a list of enclosing sets (boxes by default)
# c: a list of masks indicating the coverage samples belonging to each set

Step 5: Compute lower probability measure and create structure

We'll use scenario theory to compute a lower probability measure for each enclosing set.

The data depth i.e. the number of levels is l = len(a) = len(b) = len(c).

fy,p = peeling_to_structure(a,b,kind='scenario',beta=0.01)
# fy: a structure containing projections (fuzzy structure)
# p: a list of lower probability, one for each level

fy.shape  # prints: (26,2,2)

Step 6: Obtain marginal structures (fuzzy numbers) by projecting the coverage samples

This steps builds the marginal fuzzy structures of the inderect observations.

fx = samples_to_fuzzy_projection(ux,c)
# fy: a structure containing projections of the original multivariate structure in the input space

fx.shape # prints: (26,3,2)

Plotting

plot_fuzzy(fx,p=p,grid=True,figsize=(12,7))

png

plot_peeling_nxd(Y,a,b,p=p,figsize=(9,9),grid=False,label='Y')

png

plot_peeling_nxd_back(ux,c,p=p,baseline_alpha=0.9,figsize=(12,12))

png

Owner
Marco
Postdoc in Engineering @ Uni of Liverpool.
Marco
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023