Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

Overview

On the Generative Utility of Cyclic Conditionals

This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals" (NeurIPS 2021).

Chang Liu <[email protected]>, Haoyue Tang, Tao Qin, Jintao Wang, Tie-Yan Liu.
[Paper & Appendix] [Slides] [Video] [Poster]

Introduction

graphical summary

Whether and how can two conditional models p(x|z) and q(z|x) that form a cycle uniquely determine a joint distribution p(x,z)? We develop a general theory for this question, including criteria for the two conditionals to correspond to a common joint (compatibility) and for such joint to be unique (determinacy). As in generative models we need a generator (decoder/likelihood model) and also an encoder (inference model) for representation, the theory indicates they could already define a generative model p(x,z) without specifying a prior distribution p(z)! We call this novel generative modeling framework as CyGen, and develop methods to achieve the eligibility (compatibility and determinacy) and the usage (fitting and generating data) as a generative model.

This codebase implements these CyGen methods, and various baseline methods. The model architectures are based on the Sylvester flow (Householder version), and the experiment environments/setups follow FFJORD. Authorship is clarified in each file.

Requirements

The code requires python version >= 3.6, and is based on PyTorch. To install requirements:

pip install -r requirements.txt

Usage

Run the run_toy.sh and run_image.sh scripts for the synthetic and real-world (i.e. MNIST and SVHN) experiments. See the commands in the script files or python3 main_[toy|image].py --help for customized usage or hyperparameter tuning.

For the real-world experiments, downstream classification accuracy is evaluated along training. To evaluate the FID score, run the command python3 compute_gen_fid.py --load_dict=<path_to_model.pth>.

Results

CyGen synthetic results

As a trailer, we show the synthetic results here. We see that CyGen achieves both high-quality data generation, and well-separated latent clusters (useful representation). This is due to the removal of a specified prior distribution so that the manifold mismatch and posterior collapse problems are avoided. DAE (denoising auto-encoder) does not need a prior, but its training method hurts determinacy. If pretrained as a VAE (i.e. CyGen(PT)), we see that the knowledge of a centered and centrosymmetric prior is encoded through the conditional models. See the paper for more results.

Owner
Chang Liu
Senior Researcher @ MSR Asia. Ph.D. from Tsinghua University. Statistical Machine Learning, Bayesian Inference, Generative Models
Chang Liu
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022