Code for IntraQ, PyTorch implementation of our paper under review

Overview

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper

Requirements

Python >= 3.7.10

Pytorch == 1.7.1

Reproduce results

Stage1: Generate data.

cd data_generate

Please install all required package in requirements.txt.

"--save_path_head" in run_generate_cifar10.sh/run_generate_cifar100.sh is the path where you want to save your generated data pickle.

For cifar10/100

bash run_generate_cifar10.sh
bash run_generate_cifar100.sh

For ImageNet

"--save_path_head" in run_generate.sh is the path where you want to save your generated data pickle.

"--model" in run_generate.sh is the pre-trained model you want (also is the quantized model). You can use resnet18/mobilenet_w1/mobilenetv2_w1.

bash run_generate.sh

Stage2: Train the quantized network

cd ..
  1. Modify "qw" and "qa" in cifar10_resnet20.hocon/cifar100_resnet20.hocon/imagenet.hocon to select desired bit-width.

  2. Modify "dataPath" in cifar10_resnet20.hocon/cifar100_resnet20.hocon/imagenet.hocon to the real dataset path (for construct the test dataloader).

  3. Modify the "Path_to_data_pickle" in main_direct.py (line 122 and line 135) to the data_path and label_path you just generate from Stage1.

  4. Use the below commands to train the quantized network. Please note that the model that generates the data and the quantized model should be the same.

For cifar10/100

python main_direct.py --model_name resnet20_cifar10 --conf_path cifar10_resnet20.hocon --id=0

python main_direct.py --model_name resnet20_cifar100 --conf_path cifar100_resnet20.hocon --id=0

For ImageNet, you can choose the model by modifying "--model_name" (resnet18/mobilenet_w1/mobilenetv2_w1)

python main_direct.py --model_name resnet18 --conf_path imagenet.hocon --id=0

Evaluate pre-trained models

The pre-trained models and corresponding logs can be downloaded here

Please make sure the "qw" and "qa" in *.hocon, *.hocon, "--model_name" and "--model_path" are correct.

For cifar10/100

python test.py --model_name resnet20_cifar10 --model_path path_to_pre-trained model --conf_path cifar10_resnet20.hocon

python test.py --model_name resnet20_cifar100 --model_path path_to_pre-trained model --conf_path cifar100_resnet20.hocon

For ImageNet

python test.py --model_name resnet18/mobilenet_w1/mobilenetv2_w1 --model_path path_to_pre-trained model --conf_path imagenet.hocon

Results of pre-trained models are shown below:

Model Bit-width Dataset Top-1 Acc.
resnet18 W4A4 ImageNet 66.47%
resnet18 W5A5 ImageNet 69.94%
mobilenetv1 W4A4 ImageNet 51.36%
mobilenetv1 W5A5 ImageNet 68.17%
mobilenetv2 W4A4 ImageNet 65.10%
mobilenetv2 W5A5 ImageNet 71.28%
resnet-20 W3A3 cifar10 77.07%
resnet-20 W4A4 cifar10 91.49%
resnet-20 W3A3 cifar100 64.98%
resnet-20 W4A4 cifar100 48.25%
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
Namish Khanna 40 Oct 11, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023