GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Related tags

Deep LearningGLaRA
Overview

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

This paper is the code release of the paper GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition, which is accepted at EACL-2021.

This work aims at improving weakly supervised named entity reconigtion systems by automatically finding new rules that are helpful at identifying entities from data. The idea is, as shown in the following figure, if we know rule1: associated with->Disease is an accurate rule and it is semantically related to rule2: cause of->Disease, we should be able use rule2 as another accurate rule for identifying Disease entities.

The overall workflow is illustrated as below, for a specific type of rules, we frist extract a large set of possible rule candidates from unlabeled data. Then the rule candidates are constructed into a graph where each node represents a candidate and edges are built based on the semantic similarties of the node pairs. Next, by manually identifying a small set of nodes as seeding rules, we use a graph-based neural network to find new rules by propaging the labeling confidence from seeding rules to other candidates. Finally, with the newly learned rules, we follow weak supervision to create weakly labeled dataset by creating a labeling matrix on unlabeled data and training a generative model. Finally, we train our final NER system with a discriminative model.

Installation

  1. Install required libraries
  1. Download dataset
    • Once LinkedHMM is successfully installed, move all the files in "data" fold under LinkedHMM directory to the "datasets" folder in the currect directory.
    • Download pretrained sciBERT embeddings here: https://huggingface.co/allenai/scibert_scivocab_uncased, and move it to the folder pretrained-model.
  • For saving the time of reading data, we cache all datasets into picked objects: python cache_datasets.py

Run experiments

The experiments on the three data sets are independently conducted. To run experiments for one task, (i.e NCBI), please go to folder code-NCBI. For the experiments on other datasets, namely BC5CDR and LaptopReview, please go to folder code-BC5CDR and code-LaptopReview and run the same commands.

  1. Extract candidate rules for each type and cache embeddings, edges, seeds, etc.
  • run python prepare_candidates_and_embeddings.py --dataset NCBI --rule_type SurfaceForm to cache candidate rules, embeddings, edges, etc., for SurfaceForm rule.
  • other rule types are Suffix, Prefix, InclusivePreNgram, ExclusivePreNgram, InclusivePostNgram, ExclusivePostNgram, and Dependency.
  • all cached data will be save into the folder cached_seeds_and_embeddings.
  1. Train propogation and find new rules.
  • run python propagate.py --dataset NCBI --rule_type SurfaceForm to learn SurfaceForm rules.
  • other rules are Suffix, Prefix, InclusivePreNgram, ExclusivePreNgram, InclusivePostNgram, ExclusivePostNgram, and Dependency.
  1. Train LinkedHMM generative model
  • run python train_generative_model.py --dataset NCBI --use_SurfaceForm --use_Suffix --use_Prefix --use_InclusivePostNgram --use_Dependency.
  • The argument --use_[TYPE] is used to activate a specific type of rules.
  1. Train discriminative model
  • run create_dataset_for_bert_tagger.py to prepare dataset for training the tagging model. (make sure to change the dataset and data_name variables in the file first.)
  • run train_discriminative_model.py

References

[1] Esteban Safranchik, Shiying Luo, Stephen H. Bach. Weakly Supervised Sequence Tagging from Noisy Rules.

Owner
Xinyan Zhao
I am a Ph.D. Student in School of Information University of Michigan.
Xinyan Zhao
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023