Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Related tags

Deep LearningGrowF
Overview

GrowF

Banner

Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

TLDR; High Def Living Trees that you can breed, trim and mint as NFTs on Solana, Ethereum, Cardano and other blockchain networks.

This demo represents the current state of the codebase. If anyone wishes to join this project, please contact or fork.

Written in Python using the Blender Library

Current state of development https://www.youtube.com/watch?v=BUarQzuhj1c

Installation

  • Install Blender if you don't already have it
  • Open treegen.blend

Once opened, you can generate whatever tree is currently there by default by going to the scripting tab, opening tree.py and pressing the Run button

The Metaverse Needs Trees

Let's Face it, it's hard to model trees that are realistic in any 3D modeling platform. Much less, make them lowpoly or high poly, or ready for video games or kinematics and physics. But if you think about it, it's hard to make believable trees because trees are grown, not sculpted by nature. They the results of a bunch of growth patterns that came together to form what we categorize as trees or even any type of plant. The bifurcation structure of a tree is everywhere. You needen't go as far as looking at the human nervous system, or in the structure of folders in your computer, to see that same tree organization. Imagine having a tree that you can plant on top of a structure like a stone sculpture in VR and watch it's roots eating through the walls and stone in hyper-real time. Imagine breeding trees to be a specific color or give a specific type of fruit, or growing them in zero gravity. Imagine planting a garden and watching your plants and trees grow together over time and generations.

We Have the Technology

Recent developments in the fields of Cellular Automata and Genetic Algorithms have led to the possibility of growing living organisms in higher dimensions. Many projects like Lenia, The Life Engine and even VR games like Playne, and Inward have made a big deal of living organisms in games and tech culture. These living organisms can behave like bacteria, like larger soft-bodied oganisms, or like Trees. On a scientific level, there exist virtual living ecosystems of over 500,000 plants in simulations like the ones seen in the paper "Synthetic Silviculture: Multi-Scale Modeling of Plant Ecosystems". These large or multi-scale simulations are focused on larger scale simulations, creating realistic, yet estimated details, (albeit through rigorous scientific analysis to approximate reality).

But that begs the question, how high definition can one go in creating growing 3D systems? Can cell differentiation be accquired by genetic algorithm in new and spontaneous ways which account for ecosystem? This project aims to advance toward answering those questions, starting with what we think will end up being hi-res tree models, but could end up as anything.

I think it's possible to go to infinite resolution by making a growth protocol that is forward compatible, so that the computers of the future which operate on orders of magnitude of higher parallelism can show the same tree you minted in 2022, in much higher detail.

The Blockchain? Why?

Well, trees, and other living virtual organisms can be owned. The 3D Models of their life progression can be included in games using Non-Fungible Tokens (NFTs). If you can own any unique digital item, why not own a tree that you have bred, or trimmed, or simply that you found in a VR game somewhere. Think about trimming, or when trees bear fruits that have specific properties or visual peculiarities. Each branch of the tree can be removed, the fruits or leaves, (or whatever ends up growing on a bifurcation) can be separated from the tree, recorded as removed in the tree's history (affecting it's model forever). Just like with real trees, the seeds in those fruits can be minted and given to friends or sold, reflecting the value that you have added to the tree by planting and growing it somewhere in the Metaverse. It could end up seeding virtual forests, or being used as CG set pieces in movies or video games depending on who buys it from you.

Owner
Nathaniel Gibson
Nathaniel Gibson
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022