ElasticFace: Elastic Margin Loss for Deep Face Recognition

Overview

This is the official repository of the paper:

ElasticFace: Elastic Margin Loss for Deep Face Recognition

Paper on arxiv: arxiv

evaluation

Model Log file Pretrained model
ElasticFace-Arc log file pretrained-mode
ElasticFace-Cos log file pretrained-mode
ElasticFace-Arc+ log file pretrained-mode
ElasticFace-Cos+ log file pretrained-mode

Evaluation result: See: Paper with code

Face recognition model training

Model training: In the paper, we employ MS1MV2 as the training dataset which can be downloaded from InsightFace (MS1M-ArcFace in DataZoo) Download MS1MV2 dataset from insightface on strictly follow the licence distribution

Unzip the dataset and place it in the data folder Set the config.output and config.loss in the config/config.py

All code has been trained and tested using Pytorch 1.7.1

Face recognition evaluation

evaluation on LFW, AgeDb-30, CPLFW, CALFW and CFP-FP:
  1. download the data from their offical webpages.
  2. alternative: The evaluation datasets are available in the training dataset package as bin file
  3. set the config.rec to dataset folder e.g. data/faces_emore
  4. set the config.val_targets for list of the evaluation dataset
  5. download the pretrained model from link the previous table
  6. set the config.output to path to pretrained model weights
  7. run eval/evaluation.py
  8. the output is test.log contains the evaluation results over all epochs

To-do

  • Add evaluation script

If you use any of the code provided in this repository, please cite the following paper:

Citation

@misc{boutros2021elasticface,
      title={ElasticFace: Elastic Margin Loss for Deep Face Recognition}, 
      author={Fadi Boutros and Naser Damer and Florian Kirchbuchner and Arjan Kuijper},
      year={2021},
      eprint={2109.09416},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}


License

This project is licensed under the terms of the Attribution-NonCommercial-ShareAlike 4.0 
International (CC BY-NC-SA 4.0) license. 
Copyright (c) 2021 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt
Owner
Fadi Boutros
Fadi Boutros
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022