Code accompanying our NeurIPS 2021 traffic4cast challenge

Overview

Traffic forecasting on traffic movie snippets

This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the challenge, traffic data is provided in movie format, i.e. a rasterised map with volume and average speed values evolving over time. The code is based on (and forked from) the code provided by the competition organizers, which can be found here. For further information on the data and the challenge we also refer to the competition Website or GitHub.

Installation and setup

To install the repository and all required packages, run

git clone https://github.com/NinaWie/NeurIPS2021-traffic4cast.git
cd NeurIPS2021-traffic4cast

conda env update -f environment.yaml
conda activate t4c

export PYTHONPATH="$PYTHONPATH:$PWD"

Instructions on installation with GPU support can be found in the yaml file.

To reproduce the results and train or test on the original data, download the data and extract it to the subfolder data/raw.

Test model

Download the weights of our best model here and put it in a new folder named trained_model in the main directory. The path to the checkpoint should now be NeurIPS2021-traffic4cast/trained_models/ckpt_upp_patch_d100.pt.

To create a submission on the test data, run

DEVICE=cpu
DATA_RAW_PATH="data/raw"
STRIDE=10

python baselines/baselines_cli.py --model_str=up_patch --resume_checkpoint='trained_models/ckpt_upp_patch_d100.pt' --radius=50 --stride=$STRIDE --epochs=0 --batch_size=1 --num_workers=0 --data_raw_path=$DATA_RAW_PATH --device=$DEVICE --submit

Notes:

  • For our best submission (score 59.93) a stride of 10 is used. This means that patches are extracted from the test data in a very densely overlapping manner. However, much more patches per sample have to be predicted and the runtime thus increases significantly. We thus recommend to use a stride of 50 for testing (score 60.13 on leaderboard).
  • In our paper, we define d as the side length of each patch. In this codebase we set a radius instead. The best performing model was trained with radius 50 corresponding to d=100.
  • The --submit-flag was added to the arguments to be called whenever a submission should be created.

Train

To train a model from scratch with our approach, run

DEVICE=cpu
DATA_RAW_PATH="data/raw"

python baselines/baselines_cli.py --model_str=up_patch --radius=50 --epochs=1000 --limit=100 --val_limit=10 --batch_size=8 --checkpoint_name='_upp_50_retrained' --num_workers=0 --data_raw_path=$DATA_RAW_PATH --device=$DEVICE

Notes:

  • The model will be saved in a folder called ckpt_upp_50_retrained, as specified with the checkpoint_name argument. The checkpoints will be saved every 50 epochs and whenever a better validation score is achieved (best.pt). Later, training can be resumed (or the model can be tested) by setting --resume_checkpoint='ckpt_upp_50_retrained/best.pt'.
  • No submission will be created after the run. Add the flag --submit in order to create a submission
  • The stride argument is not necessary for training, since it is only relevant for test data. The validation MSE is computed on the patches, not a full city.
  • In order to use our dataset, the number of workers must be set to 0. Otherwise, the random seed will be set such that the same files are loaded for every epoch. This is due to the setup of the PatchT4CDataset, where files are randomly loaded every epoch and then kept in memory.

Reproduce experiments

In our short paper, further experiments comparing model architectures and different strides are shown. To reproduce the experiment on stride values, execute the following steps:

  • Run python baselines/naive_shifted_stats.py to create artifical test data from the city Antwerp
  • Adapt the paths in the script
  • Run python test_script.py
  • Analyse the output csv file results_test_script.csv

For the other experiments, we regularly write training and validation losses to a file results.json during training (file is stored in the same folder as the checkpoints).

Other approaches

  • In naive_shifted_stats we have implemented a naive approach to the temporal challenge, namely using averages of the previous year and adapting the values to 2020 with a simple factor dependent on the shift of the input hour. The statistics however first have to be computed for each city.
  • In the configs file further options were added, for example u_patch which is the normal U-Net with patching, and models from the segmentation_models_pytorch (smp) PyPI package. For the latter, smp must be installed with pip install segmentation_models_pytorch.
Owner
Nina Wiedemann
Nina Wiedemann
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022