RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

Related tags

Deep LearningRE3
Overview

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021)

Code for State Entropy Maximization with Random Encoders for Efficient Exploration.

In this repository, we provide code for RE3 algorithm described in the paper linked above. We provide code in three sub-directories: rad_re3 containing code for the combination of RE3 and RAD, dreamer_re3 containing code for the combination of RE3 and Dreamer, and a2c_re3 containing code for the combination of RE3 and A2C.

We also provide raw data(.csv) and code for visualization in the data directory.

If you find this repository useful for your research, please cite:

@inproceedings{seo2021state,
  title={State Entropy Maximization with Random Encoders for Efficient Exploration},
  author={Seo, Younggyo and Chen, Lili and Shin, Jinwoo and Lee, Honglak and Abbeel, Pieter and Lee, Kimin},
  booktitle={International Conference on Machine Learning},
  year={2021}
}

RAD + RE3

Our code is built on top of the DrQ repository.

Installation

You could install all dependencies by following command:

conda env install -f conda_env.yml

You should also install custom version of dm_control to run experiments on Walker Run Sparse and Cheetah Run Sparse. You could do this by following command:

cd ../envs/dm_control
pip install .

Instructions

RAD

python train.py env=hopper_hop batch_size=512 action_repeat=2 logdir=runs_rad_re3 use_state_entropy=false

RAD + RE3

python train.py env=hopper_hop batch_size=512 action_repeat=2 logdir=runs_rad_re3

We provide all scripts to reproduce Figure 4 (RAD, RAD + RE3) in scripts directory.

Dreamer + RE3

Our code is built on top of the Dreamer repository.

Installation

You could install all dependencies by following command:

pip3 install --user tensorflow-gpu==2.2.0
pip3 install --user tensorflow_probability
pip3 install --user git+git://github.com/deepmind/dm_control.git
pip3 install --user pandas
pip3 install --user matplotlib

# Install custom dm_control environments for walker_run_sparse / cheetah_run_sparse
cd ../envs/dm_control
pip3 install .

Instructions

Dreamer

python dreamer.py --logdir ./logdir/dmc_pendulum_swingup/dreamer/12345 --task dmc_pendulum_swingup --precision 32 --beta 0.0 --seed 12345

Dreamer + RE3

python dreamer.py --logdir ./logdir/dmc_pendulum_swingup/dreamer_re3/12345 --task dmc_pendulum_swingup --precision 32 --k 53 --beta 0.1 --seed 12345

We provide all scripts to reproduce Figure 4 (Dreamer, Dreamer + RE3) in scripts directory.

A2C + RE3

Training code can be found in rl-starter-files directory, which is forked from rl-starter-files, which uses a modified A2C implementation from torch-ac. Note that currently there is only support for A2C.

Installation

All of the dependencies are in the requirements.txt file in rl-starter-files. They can be installed manually or with the following command:

pip3 install -r requirements.txt

You will also need to install our cloned version of torch-ac with these commands:

cd torch-ac
pip3 install -e .

Instructions

See instructions in rl-starter-files directory. Example scripts can be found in rl-starter-files/rl-starter-files/run_sent.sh.

Owner
Younggyo Seo
Ph.D Student @ Graduate School of AI, KAIST
Younggyo Seo
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021