Development Kit for the SoccerNet Challenge

Overview

SoccerNetv2-DevKit

Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started working with the soccernet data and the proposed tasks. More information about the dataset can be found on our official website.

SoccerNet-v2 is an extension of SoccerNet-v1 with new and challenging tasks including action spotting, camera shot segmentation with boundary detection, and a novel replay grounding task.

The dataset consists of 500 complete soccer games including:

  • Full untrimmed broadcast videos in both low and high resolution.
  • Pre-computed features such as ResNET-152.
  • Annotations of actions among 17 classes (Labels-v2.json).
  • Annotations of camera replays linked to actions (Labels-cameras.json).
  • Annotations of camera changes and camera types for 200 games (Labels-cameras.json).

Participate in our upcoming Challenge in the CVPR 2021 International Challenge on Activity Recognition Workshop and try to win up to 1000$ sponsored by Second Spectrum! All details can be found on the challenge website, or on the main page.

The participation deadline is fixed at the 30th of May 2021. The official rules and guidelines are available on ChallengeRules.md.

How to download SoccerNet-v2

A SoccerNet pip package to easily download the data and the annotations is available.

To install the pip package simply run:

pip install SoccerNet

Please follow the instructions provided in the Download folder of this repository. Do also mind that signing an Non-Disclosure agreement (NDA) is required to access the LQ and HQ videos: NDA.

How to extract video features

As it was one of the most requested features on SoccerNet-V1, this repository provides functions to automatically extract the ResNet-152 features and compute the PCA on your own broadcast videos. These functions allow you to test pre-trained action spotting, camera segmentation or replay grounding models on your own games.

The functions to extract the video features can be found in the Features folder.

Baseline Implementations

This repository contains several baselines for each task which are presented in the SoccerNet-V2 paper, or subsequent papers. You can use these codes to build upon our methods and improve the performances.

Evaluation

This repository and the pip package provide evaluation functions for the three proposed tasks based on predictions saved in the JSON format. See the Evaluation folder of this repository for more details.

Visualizations

Finally, this repository provides the Annotation tool used to annotate the actions, the camera types and the replays. This tool can be used to visualize the information. Please follow the instruction in the dedicated folder for more details.

Citation

For further information check out the paper and supplementary material: https://arxiv.org/abs/2011.13367

Please cite our work if you use our dataset:

@InProceedings{Deliège2020SoccerNetv2,
      title={SoccerNet-v2 : A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos}, 
      author={Adrien Deliège and Anthony Cioppa and Silvio Giancola and Meisam J. Seikavandi and Jacob V. Dueholm and Kamal Nasrollahi and Bernard Ghanem and Thomas B. Moeslund and Marc Van Droogenbroeck},
      year={2021},
      booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
      month = {June},
}
Owner
Silvio Giancola
Silvio Giancola
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022