PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

Related tags

Deep LearningSSTN
Overview

PyTorch Implementation of SSTN for Hyperspectral Image Classification

Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the implementation of SSTN and SSRN here: NetworkBlocks

UPDATE: Source codes of training and testing SSTN/SSRN on Kennedy Space Center (KSC) dataset have been added, in addition to those on Pavia Center (PC), Indian Pines(IN), and University of Pavia (UP) datasets.

Here is the bibliography info:

Zilong Zhong, Ying Li, Lingfei Ma, Jonathan Li, Wei-Shi Zheng. "Spectral-Spatial Transformer 
Network for Hyperspectral Image Classification: A Factorized Architecture Search Framework.” 
IEEE Transactions on Geoscience and Remote Sensing, DOI:10.1109/TGRS.2021.3115699,2021.

Description

Neural networks have dominated the research of hyperspectral image classification, attributing to the feature learning capacity of convolution operations. However, the fixed geometric structure of convolution kernels hinders long-range interaction between features from distant locations. In this work, we propose a novel spectral-spatial transformer network (SSTN), which consists of spatial attention and spectral association modules, to overcome the constraints of convolution kernels. Extensive experiments conducted on three popular hyperspectral image benchmarks demonstrate the versatility of SSTNs over other state-of-the-art (SOTA) methods. Most importantly, SSTN obtains comparable accuracy to or outperforms SOTA methods with only 1.2% of multiply-and-accumulate (MAC) operations compared to a strong baseline SSRN.

Fig.1 Spectral-Spatial Transformer Network (SSTN) with the architecture of 'AEAE', in which 'A' and 'E' stand for a spatial attention block and a spectral association block, respectively. (a) Search space for unit setting. (b) Search space for block sequence.

Fig.2 Illustration of spatial attention module (left) and spectral association module (right). The attention maps Attn in the spatial attention module is produced by multiplying two reshaped tensors Q and K. Instead, the attention maps M1 and M2 in the spectral association module are the direct output of a convolution operation. The spectral association kernels Asso represent a compact set of spectral vectors used to reconstruct input feature X.

Prerequisites

When you create a conda environment, check you have installed the packages in the package-list. You can also refer to the managing environments of conda.

Usage

HSI data can be downloaded from this website HyperspectralData. Before training or evaluating different models, please make sure the datasets are in the correct folder and download the Pavia Center (PC) HSI dataset, which is too large to upload here. For example, the raw HSI imagery and its ground truth map for the PC dataset should be put in the following two paths:

./dataset/PC/Pavia.mat
./dataset/PC/Pavia_gt.mat 

Commands to train SSTNs with widely studied hyperspectral imagery (HSI) datasets:

$ python train_PC.py
$ python train_KSC.py
$ python train_IN.py
$ python train_UP.py

Commands to train SSRNs with widely studied hyperspectral imagery (HSI) datasets:

$ python train_PC.py --model SSRN
$ python train_KSC.py --model SSRN
$ python train_IN.py --model SSRN
$ python train_UP.py --model SSRN

Commands to test trained SSTNs and generate classification maps:

$ python test_IN.py
$ python test_KSC.py
$ python test_UP.py
$ python test_PC.py

Commands to test trained SSRNs and generate classification maps:

$ python test_IN.py --model SSRN
$ python test_KSC.py --model SSRN
$ python test_UP.py --model SSRN
$ python test_PC.py --model SSRN

Result of Pavia Center (PC) Dataset

Fig.3 Classification maps of different models with 200 samples for training on the PC dataset. (a) False color image. (b) Ground truth labels. (c) Classification map of SSRN (Overall Accuracy 97.64%) . (d) Classification map of SSTN (Overall Accuracy 98.95%) .

Result of Kennedy Space Center (KSC) Dataset

Fig.3 Classification maps of different models with 200 samples for training on the KSC dataset. (a) False color image. (b) Ground truth labels. (c) Classification map of SSRN (Overall Accuracy 96.60%) . (d) Classification map of SSTN (Overall Accuracy 97.66%) .

Result of Indian Pines (IN) dataset

Fig.4 Classification maps of different models with 200 samples for training on the IN dataset. (a) False color image. (b) Ground truth labels. (c) Classification map of SSRN (Overall Accuracy 91.75%) . (d) Classification map of SSTN (Overall Accuracy 94.78%).

Result of University of Pavia (UP) dataset

Fig.5 Classification maps of different models with 200 samples for training on the UP dataset. (a) False color image. (b) Ground truth labels. (c) Classification map of SSRN (Overall Accuracy 95.09%) . (d) Classification map of SSTN (Overall Accuracy 98.21%).

Reference

  1. Tensorflow implementation of SSRN: https://github.com/zilongzhong/SSRN.
  2. Auto-CNN-HSI-Classification: https://github.com/YushiChen/Auto-CNN-HSI-Classification
Owner
Zilong Zhong
PhD in Machine Learning and Intelligence at the Department of Systems Design Engineering, University of Waterloo
Zilong Zhong
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros

Nikos Kolotouros 209 Dec 13, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022