The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Overview

Directed Graph Contrastive Learning

The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL).

In this paper, we present the first contrastive learning framework for learning directed graph representation.

Requirements

Our project is developed using Python 3.7, PyTorch 1.7.0 with CUDA10.2. We recommend you to use anaconda for dependency configuration.

First create an anaconda environment called DiGCL by

conda create -n DiGCL python=3.7
conda activate DiGCL

Then, you need to install torch manually to fit in with your server environment (e.g. CUDA version). For the torch and torchvision used in my project, run

conda install pytorch==1.7.0 torchvision==0.6.0 cudatoolkit=10.2 -c pytorch

Besides, torch-scatter and torch-sparse are required for dealing with sparse graph. For these two packages, please follow their official instruction torch-scatter and torch-sparse.

Other requirements can be set up through:

cd DiGCL
pip install -e .

Usage

cd code
python train_digcl.py --gpu_id 0 --dataset cora_ml --curr-type log
python train_digcl.py --gpu_id 0 --dataset citeseer

The --dataset argument can be one of [cora_ml, citeseer] and the --curr-type argument can be one of [linear, log, exp, fixed].

License

DiGCL is released under the MIT License. See the LICENSE file for more details.

Useful Links

We are grateful for the following enlightening works, which are also of great use in our work.

  • Graph Contrastive Learning Library for PyTorch: PyGCL
  • Graph Contrastive Learning with Adaptive Augmentation: GRACE and GCA
  • Graph Contrastive Learning with Augmentations: GraphCL
  • Our another supervised approach to process directed graphs: DiGCN
  • MagNet: A Neural Network for Directed Graphs: MagNet

Acknowledgements

The template is borrowed from Pytorch-Geometric benchmark suite. We thank the authors of following works for opening source their excellent codes. Pytorch-Geometric, Graph2Gauss, and GNN-benchmark.

Owner
Tong Zekun
Student now~
Tong Zekun
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022