The toolkit to generate auto labeled datasets

Overview

Ozeu

Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box from the recorded video files.

Installation

Requirements

  • ffmpeg
  • torch
  • mmcv-full

Example installation command for cuda11.1.

pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

pip install mmcv-full==1.3.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

pip install git+https://github.com/open-mmlab/[email protected]

git clone [email protected]:xiong-jie-y/ozeu.git
cd ozeu
pip install -e .

Usage

1. Record Video

I recommend record video with the camera where you want to run detector. For webcam, you can use command like this.

ffmpeg -f v4l2 -framerate 60 -video_size 1280x720 -i /dev/video0 output_file.mkv

I recommend to place the object to record in a desk or somewhere on simple texture. That will reduce error rate. You can hold the object by your hand, because the dataset generator can recognize and remove hand like this.

2. Create dataset definition file.

You can write dataset definition file in yaml. Please define class names and ids at categories, and please associate class id and video paths in the datasets. The class ids will be the label of the files. video_path is relative to the dataset definition file. Video files that are supported by ffmpeg can be used.

categories:
  - id: 1
    name: alchol sheet
  - id: 2
    name: ipad
datasets:
  - category_id: 2
    video_path: IMG_4194_2.MOV
  - category_id: 2
    video_path: IMG_4195_2.MOV

3. Generate labaled coco dataset.

You can generate labaled coco dataset by giving the dataset definition file above. If you didn't hold object by hand while recording video, you can remove --remove-hand option.

python scripts/create_coco_dataset_from_videos.py  --dataset-definition-file ${DATASET_DEFINITION_FILE} --model-name u2net --output-path ${OUTPUT_DATASET_FOLDER} --resize-factor 2 --fps 15 --remove-hand

4. Generate background augmented datasets.

Please place background images at backgrounds_for_augmentation. The background augmentation script will use these files to replace background of datasets. Here we use VOC images as background images

wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
--2021-06-02 22:13:22--  https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
tar xf VOCtrainval_11-May-2012.tar
mkdir backgrounds_for_augmentation
mv VOCdevkit/VOC2012/JPEGImages/* backgrounds_for_augmentation/

After preparing background images, please generate background augmented dataset by running

python scripts/generate_background_augmented_dataset.py --input-dataset-path ${DATASET_FOLDER} --destination-root ${AUGMENTED_DATASET_FOLDER} --augmentation-mode different_background

5. Merge

You can merge background augmented dataset and dataset.

python scripts/merge_coco_datasets.py --input-dirs ${AUGMENTED_DATASET_FOLDER} --input-dirs ${DATASET_FOLDER} --destination-root ${MERGED_DATASET}

6. (Optional) Import dataset into cvat.

There is the annotation tool CVAT that can accept coco format dataset. So you can import dataset into your project and fix dataset.

7. TRAIN!

TRAIN!!!

Acknowledgement

  • I wish to thank my wife, Remilia Scarlet.
  • This toolkit uses U^2 net for salient object detection. Thank you for nice model!
You might also like...
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Official PyTorch implementation of
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Asterisk is a framework to generate high-quality training datasets at scale
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can detect enemy player models in real time, during gameplay. Finally, a virtual input device will adjust the player's crosshair based on live detections for greater accuracy.

根据midi文件演奏“风物之诗琴”的脚本
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Releases(0.0.1dev4)
Owner
Xiong Jie
Software Engineer, maybe? https://twitter.com/_xiongjie_
Xiong Jie
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022