这是一个unet-pytorch的源码,可以训练自己的模型

Overview

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现


目录

  1. 性能情况 Performance
  2. 所需环境 Environment
  3. 注意事项 Attention
  4. 文件下载 Download
  5. 预测步骤 How2predict
  6. 训练步骤 How2train
  7. miou计算 miou
  8. 参考资料 Reference

性能情况

unet并不适合VOC此类数据集,其更适合特征少,需要浅层特征的医药数据集之类的。

训练数据集 权值文件名称 测试数据集 输入图片大小 mIOU
VOC12+SBD unet_voc.pth VOC-Val12 512x512 55.11

所需环境

torch==1.2.0
torchvision==0.4.0

注意事项

unet_voc.pth是基于VOC拓展数据集训练的。
unet_medical.pth是使用示例的细胞分割数据集训练的。
在使用时需要注意区分。

文件下载

训练所需的unet_voc.pth和unet_medical.pth可在百度网盘中下载。
链接: https://pan.baidu.com/s/1AUBpqsSgamoQGEYpNjJg7A 提取码: i3ck

VOC拓展数据集的百度网盘如下:
链接: https://pan.baidu.com/s/1BrR7AUM1XJvPWjKMIy2uEw 提取码: vszf

预测步骤

一、使用预训练权重

a、VOC预训练权重

  1. 下载完库后解压,如果想要利用voc训练好的权重进行预测,在百度网盘或者release下载unet_voc.pth,放入model_data,运行即可预测。
img/street.jpg
  1. 利用video.py可进行摄像头检测。

b、医药预训练权重

  1. 下载完库后解压,如果想要利用医药数据集训练好的权重进行预测,在百度网盘或者release下载unet_medical.pth,放入model_data,修改unet.py中的model_path和num_classes;
_defaults = {
    "model_path"        : 'model_data/unet_voc.pth',
    "model_image_size"  : (512, 512, 3),
    "num_classes"       : 21,
    "cuda"              : True,
    #--------------------------------#
    #   blend参数用于控制是否
    #   让识别结果和原图混合
    #--------------------------------#
    "blend"             : True
}
  1. 运行即可预测。
img/cell.png

二、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在unet.py文件里面,在如下部分修改model_path、backbone和num_classes使其对应训练好的文件;model_path对应logs文件夹下面的权值文件
_defaults = {
    "model_path"        : 'model_data/unet_voc.pth',
    "model_image_size"  : (512, 512, 3),
    "num_classes"       : 21,
    "cuda"              : True,
    #--------------------------------#
    #   blend参数用于控制是否
    #   让识别结果和原图混合
    #--------------------------------#
    "blend"             : True
}
  1. 运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

训练步骤

一、训练voc数据集

  1. 将我提供的voc数据集放入VOCdevkit中(无需运行voc2unet.py)。
  2. 在train.py中设置对应参数,默认参数已经对应voc数据集所需要的参数了,所以只要修改backbone和model_path即可。
  3. 运行train.py进行训练。

二、训练自己的数据集

  1. 本文使用VOC格式进行训练。
  2. 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的SegmentationClass中。
  3. 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
  4. 在训练前利用voc2unet.py文件生成对应的txt。
  5. 注意修改train.py的num_classes为分类个数+1。
  6. 运行train.py即可开始训练。

三、训练医药数据集

  1. 下载VGG的预训练权重到model_data下面。
  2. 按照默认参数运行train_medical.py即可开始训练。

miou计算

参考miou计算视频和博客。

Reference

https://github.com/ggyyzm/pytorch_segmentation
https://github.com/bonlime/keras-deeplab-v3-plus

You might also like...
Comments
  • 询问一下预训练的问题

    询问一下预训练的问题

    你好,打扰了。我是想问下主干模型是指的是在下采样过程中使用的vgg吗?如果我不改变上采样是不是就不用使用imagenet训练。然后注销掉model_path=‘’ 以及 if model_path !=‘’这段。然后使用自己的数据集去进行训练。 谢谢大佬!!!!!!。实际上大佬你的voc的权重文件是不是为二次预训练的数据。 不好意思,语言表达能力不行。俺不晓得这样说大佬明不明白。

    opened by Nine9844 5
  • 训练一段时间后,CE loss变为NAN

    训练一段时间后,CE loss变为NAN

    您好,看了您的教程我试着自己搭建了一个U-Net模型,并采用Dice + CE loss作为损失函数,但在迭代几十个epoch后,我的CE loss返回了NAN值,反馈的结果是 ‘Function 'LogSoftmaxBackward' returned nan values in its 0th output.’ 同样的数据在您源码上运行没有出现这个问题,请问您是否知道些解决方法?

    opened by Breeze-Zero 2
  • 为啥在dataloader第40行转换的array的shape和cv2不一样呢

    为啥在dataloader第40行转换的array的shape和cv2不一样呢

    我使用json_to_dataset.py转化mask后尝试使用代码查看shape import cv2 import numpy as np from PIL import Image

    file = '/home/fut/Downloads/unet-pytorch-main/mydata/masks/ID_1110_json.png' img = cv2.imread(file, cv2.IMREAD_UNCHANGED) print(img.shape)

    pil = Image.open(file) img2 = np.array(pil) print(img2.shape) 结果会是: (800, 800, 3) (800, 800) 为什么PIL读取后通道就没了,正是因为这个原因你的项目会很好跑起来。

    opened by futureflsl 1
  • from tqdm import tqdm 报错

    from tqdm import tqdm 报错

    import os import time

    import numpy as np import torch import torch.backends.cudnn as cudnn import torch.optim as optim from torch.utils.data import DataLoader from tqdm import tqdm

    opened by Luke-Wei 1
Releases(v3.0)
  • v3.0(Apr 22, 2022)

    重要更新

    • 支持step、cos学习率下降法。
    • 支持adam、sgd优化器选择。
    • 支持不同预测模式的选择,单张图片预测、文件夹预测、视频预测、图片裁剪。
    • 更新summary.py文件,用于观看网络结构。
    • 增加了多GPU训练。
    Source code(tar.gz)
    Source code(zip)
  • v2.2(Mar 4, 2022)

    重要更新

    • 更新train.py文件,增加了大量的注释,增加多个可调整参数。
    • 更新predict.py文件,增加了大量的注释,增加fps、视频预测、批量预测等功能。
    • 更新unet.py文件,增加了大量的注释,增加先验框选择、置信度、非极大抑制等参数。
    • 合并get_dr_txt.py、get_gt_txt.py和get_map.py文件,通过一个文件来实现数据集的评估。
    • 更新voc_annotation.py文件,增加多个可调整参数。
    • 更新callback.py文件,防止多线程错误。
    • 更新summary.py文件,用于观看网络结构。
    Source code(tar.gz)
    Source code(zip)
Owner
Bubbliiiing
Bubbliiiing
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022