EfficientNetV2-with-TPU - Cifar-10 case study

Overview

EfficientNetV2-with-TPU

EfficientNet

EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisiensi parameter yang lebih baik dari model sebelumnya . Untuk mengembangkan model ini, penulis menggunakan kombinasi pencarian dan penskalaan arsitektur saraf yang sadar pelatihan , untuk bersama-sama mengoptimalkan kecepatan pelatihan. Model dicari dari ruang pencarian yang diperkaya dengan operasi baru seperti Fused-MBConv .

Secara arsitektur perbedaan utama adalah:

  • EfficientNetV2 secara ekstensif menggunakan MBConv dan fusi-MBConv yang baru ditambahkan di lapisan awal.
  • EfficientNetV2 lebih memilih rasio ekspansi yang lebih kecil untuk MBConv karena rasio ekspansi yang lebih kecil cenderung memiliki lebih sedikit overhead akses memori.
  • EfficientNetV2 lebih menyukai ukuran kernel 3x3 yang lebih kecil, tetapi menambahkan lebih banyak lapisan untuk mengkompensasi bidang reseptif yang berkurang yang dihasilkan dari ukuran kernel yang lebih kecil.
  • EfficientNetV2 sepenuhnya menghapus tahap stride-1 terakhir di EfficientNet asli, mungkin karena ukuran parameternya yang besar dan overhead akses memori

Note

Model Size acc-val top-5 acc-test weight
EfficientNetV2B0 224 90.68 99.76 89.86 imagenet
EfficientNetV2B1 240 90.76 99.78 90.07 imagenet
EfficientNetV2B2 260 87.08 99.48 86.85 imagenet
EfficientNetV2B3 300 90.38 99.80 89.29 imagenet
EfficientNetV2T 320 92.80 99.86 92.53 imagenet
EfficientNetV2S 384 89.94 99.74 89.27 imagenet
EfficientNetV2M 480 91.86 99.70 90.53 imagenet
EfficientNetV2L 480 93.10 99.80 92.38 imagenet
EfficientNetV2XL 512 93.24 99.72 93.41 imagenet21K-ft1k
  • Train 90%(45000rb)

  • Validation 10%(5000rb)

  • Test(10000rb)

  • Epochs = 25

  • WeightDecay = 1e-5

  • Batchsize = 16 * 8(strategy.num_replicas_in_sync)

  • optimizers adabelief dengan LearningRateSchduler(Triangular2CyclicalLearningRate) dan Rectified = True(mencegah overshoot)

  • cifar-10 tidak di sarankan untuk di ubah ukuran nya, saya mengubah ukuran nya hanya untuk milihat apakah bagus/tidak efficientnetv2 saat mempelajari cifar-10

Referensi

Owner
Sultan syach
Sultan syach
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022