Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Related tags

Deep LearningGeMCL
Overview




Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

In this repository we provide PyTorch implementations for GeMCL; a generative approach for meta-continual learning. The directory outline is as follows:

root
 ├── code                 # The folder containing all pytorch implementations
       ├── datasets           # The path containing Dataset classes and train/test parameters for each dataset
            ├── omnigolot
                  ├── TrainParams.py  # omniglot training parameters configuration
                  ├── TestParams.py   # omniglot testing parameters configuration

            ├── mini-imagenet
                  ├── TrainParams.py  # mini-imagenet training parameters configuration
                  ├── TestParams.py   # mini-imagenet testing parameters configuration
            ├── cifar
                  ├── TrainParams.py  # cifar 100 training parameters configuration
                  ├── TestParams.py   # cifar 100 testing parameters configuration

       ├── model              # The path containing proposed models
       ├── train.py           # The main script for training
       ├── test.py            # The main script for testing
       ├── pretrain.py        # The main script for pre-training

 ├── datasets             # The location in which datasets are placed
       ├── omniglot
       ├── miniimagenet
       ├── cifar

 ├── experiments          # The location in which accomplished experiments are stored
       ├── omniglot
       ├── miniimagenet
       ├── cifar

In the following sections we will first provide details about how to setup the dataset. Then the instructions for installing package dependencies, training and testing is provided.

Configuring the Dataset

In this paper we have used Omniglot, CIFAR-100 and Mini-Imagenet datasets. The omniglot and cifar-100 are light-weight datasets and are automatically downloaded into datasets/omniglot/ or datasets/cifar/ whenever needed. however the mini-imagenet dataset need to be manually downloaded and placed in datasets/miniimagenet/. The following instructions will show how to properly setup this dataset:

  • First download the images from this link (provided by the owners) and the train.csv,val.csv,test.csv splits from this link.

  • Extract and place the downloaded files directly under datasets/miniimagenet/. (We expect to have train.csv, val.csv, test.csv and images folder under this path)

Reading directly from the disk every time we need this dataset is an extremely slow procedure. To solve this issue we use a preprocessing step, in which the images are first shrinked to 100 pixels in the smaller dimension (without cahnging the aspect ratio), and then converted to numpy npy format. The code for this preprocessing is provided in code directory and should be executed as follows:

cd code
python genrate_img.py ../datasets/miniimagenet ../datasets/miniimagenet

Wait until the success message for test, train and validation appears and then we are ready to go.

Installing Prerequisites

The following packages are required:

  • opencv-python==4.5.1
  • torch==1.7.1+cu101
  • tensorboard==2.4.1
  • pynvml==8.0.4
  • matplotlib==3.3.2
  • tqdm==4.55.1
  • scipy==1.6.0
  • torchvision==0.8.2+cu101

Training and Testing

The first step for training or testing is to confgure the desired parameters. We have seperated the training/testing parameters for each dataset and placed them under code/datasets/omniglot and code/datasets/miniimagenet. For example to change the number of meta-training episodes on omniglot dataset, one may do as following:

  • Open code/datasets/omniglot/TrainParams.py

  • Find the line self.meta_train_steps and change it's value.

Setting the training model is done in the same way by changing self.modelClass value. We have provided the following models in the code/model/ path:

file path model name in the paper
code/model/Bayesian.py GeMCL predictive
code/model/MAP.py GeMCL MAP
code/model/LR.py MTLR
code/model/PGLR.py PGLR
code/model/ProtoNet.py Prototypical

Training Instructions

To perform training first configure the training parameters in code/datasets/omniglot/TrainParams.py or code/datasets/miniimagenet/TrainParams.py for omniglot and mini-magenet datasets respectively. In theese files, self.experiment_name variable along with a Date prefix will determine the folder name in which training logs are stored.

Now to start training run the following command for omniglot (In all our codes the M or O flag represents mini-imagene and omniglot datasets respectively):

cd code
python train.py O

and the following for mini-imagenet:

cd code
python train.py M

The training logs and checkpoints are stored in a folder under experiments/omniglot/ or experiments/miniimagenet/ with the name specified in self.experiment_name. We have already attached some trained models with the same settings reported in the paper. The path and details for these models are as follows:

Model Path Details
experiments/miniimagenet/imagenet_bayesian_final GeMCL predictive trained on mini-imagenet
experiments/miniimagenet/imagenet_map_final GeMCL MAP trained on mini-imagenet
experiments/miniimagenet/imagenet_PGLR_final PGLR trained on mini-imagenet
experiments/miniimagenet/imagenet_MTLR_final MTLR trained on mini-imagenet
experiments/miniimagenet/imagenet_protonet_final Prototypical trained on mini-imagenet
experiments/miniimagenet/imagenet_pretrain_final pretrained model on mini-imagenet
experiments/miniimagenet/imagenet_Bayesian_OMLBackbone GeMCL predictive trained on mini-imagenet with OML backbone
experiments/miniimagenet/imagenet_random random model compatible to mini-imagenet but not trained previously
experiments/omniglot/omniglot_Bayesian_final GeMCL predictive trained on omniglot
experiments/omniglot/omniglot_MAP_final GeMCL MAP trained on omniglot
experiments/omniglot/omniglot_PGLR_final PGLR trained on omniglot
experiments/omniglot/omniglot_MTLR_final MTLR trained on omniglot
experiments/omniglot/omniglot_Protonet_final Prototypical trained on omniglot
experiments/omniglot/omniglot_Pretrain_final pretrained model on omniglot
experiments/omniglot/Omniglot_Bayesian_OMLBackbone GeMCL predictive trained on omniglot with OML backbone
experiments/omniglot/omniglot_random random model compatible to omniglot but not trained previously
experiments/omniglot/omniglot_bayesian_28 GeMCL predictive trained on omniglot with 28x28 input

Testing Instructions

To evaluate a previously trained model, we can use test.py by determining the path in which the model was stored. As an example consider the following structure for omniglot experiments.

root
 ├── experiments
       ├── omniglot
            ├── omniglot_Bayesian_final

Now to test this model run:

cd code
python test.py O ../experiments/omniglot/omniglot_Bayesian_final/

At the end of testing, the mean accuracy and std among test epsiodes will be printed.

Note: Both test.py and train.py use TrainParams.py for configuring model class. Thus before executing test.py make sure that TrainParams.py is configured correctly.

Pre-training Instructions

To perform a preitraining you can use

cd code
python pretrain.py O

The pre-training configuarations are also available in TrainParams.py.

References

OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022