Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

Overview

E(n)-Equivariant Transformer (wip)

Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant Graph Neural Network with attention.

Install

$ pip install En-transformer

Usage

import torch
from en_transformer import EnTransformer

model = EnTransformer(
    dim = 512,
    depth = 4,
    dim_head = 64,
    heads = 8,
    edge_dim = 4,
    fourier_features = 2
)

feats = torch.randn(1, 16, 512)
coors = torch.randn(1, 16, 3)
edges = torch.randn(1, 16, 16, 4)

feats, coors = model(feats, coors, edges)  # (1, 16, 512), (1, 16, 3)

Todo

  • masking
  • neighborhoods by radius

Citations

@misc{satorras2021en,
    title 	= {E(n) Equivariant Graph Neural Networks}, 
    author 	= {Victor Garcia Satorras and Emiel Hoogeboom and Max Welling},
    year 	= {2021},
    eprint 	= {2102.09844},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • Checkpoint sequential segments should equal number of layers instead of 1?

    Checkpoint sequential segments should equal number of layers instead of 1?

    https://github.com/lucidrains/En-transformer/blob/a37e635d93a322cafdaaf829397c601350b23e5b/en_transformer/en_transformer.py#L527

    Looking at the source code here: https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html#checkpoint_sequential

    opened by aced125 2
  • On rotary embeddings

    On rotary embeddings

    Hi @lucidrains, thank you for your amazing work; big fan! I had a quick question on the usage of this repository.

    Based on my understanding, rotary embeddings are a drop-in replacement for the original sinusoidal or learnt PEs in Transformers for sequential data, as in NLP or other temporal applications. If my application is not on sequential data, is there a reason why I should still use rotary embeddings?

    E.g. for molecular datasets such as QM9 (from the En-GNNs paper), would it make sense to have rotary embeddings?

    opened by chaitjo 1
  • Is this line required?

    Is this line required?

    https://github.com/lucidrains/En-transformer/blob/7247e258fab953b2a8b5a73b8dfdfb72910711f8/en_transformer/en_transformer.py#L159

    Is this line required? Does line 157, two lines above, make this line redundant?

    opened by aced125 1
  • Performance drop with checkpointing update

    Performance drop with checkpointing update

    I see a drop in performance (higher loss) when I update checkpointing from checkpoint_sequential(self.layers, 1, inp) to checkpoint_sequential(self.layers, len(self.layers), inp). Is this expected?

    opened by heiidii 0
  • varying number of nodes

    varying number of nodes

    @lucidrains Thank you for your efficient implementation. I was wondering how to use this implementation for the dataset when the number of nodes in each graph is not the same? For example, the datasets of small molecules.

    opened by mohaiminul2810 1
  • Edge model/rep

    Edge model/rep

    Hi,

    Thank you for providing this version of the EnGNN model. This is not really an issue just a query. The original model as implemented here (https://github.com/vgsatorras/egnn) has 3 main steps per layer: edge_feat = self.edge_model(h[row], h[col], radial, edge_attr) coord = self.coord_model(coord, edge_index, coord_diff, edge_feat) h, agg = self.node_model(h, edge_index, edge_feat, node_attr) I am interested in the edge_feat and was wondering what would be an equivalent edge representation in your implementation. Line 335 in EnTransformer.py: qk = self.edge_mlp(qk) seems like the best candidate. Thanks, Pooja

    opened by heiidii 1
  • efficient implementation

    efficient implementation

    Hi, I wonder if relative distances and coordinates can be handled more efficiently using memory efficient attention as in " Self-attention Does Not Need O(n^2) Memory". It is straightforward for the scalar part.

    opened by amrhamedp 2
Releases(1.0.2)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
yufan 81 Dec 08, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022