Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Overview

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"


Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition

Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition
Hua Zhang, Ruoyun Gou, Jili Shang, Fangyao Shen, Yifan Wu and Guojun Dai

Abstract: Speech emotion recognition (SER) is a difficult and challenging task because of the affective variances between different speakers. The performances of SER are extremely reliant on the extracted features from speech signals. To establish an effective features extracting and classification model is still a challenging task. In this paper, we propose a new method for SER based on Deep Convolution Neural Network (DCNN) and Bidirectional Long Short-Term Memory with Attention (BLSTMwA) model (DCNN-BLSTMwA). We first preprocess the speech samples by data enhancement and datasets balancing. Secondly, we extract three-channel of log Mel-spectrograms (static, delta, and delta-delta) as DCNN input. Then the DCNN model pre-trained on ImageNet dataset is applied to generate the segment-level features. We stack these features of a sentence into utterance-level features. Next, we adopt BLSTM to learn the high-level emotional features for temporal summarization, followed by an attention layer which can focus on emotionally relevant features. Finally, the learned high-level emotional features are fed into the Deep Neural Network (DNN) to predict the final emotion. Experiments on EMO-DB and IEMOCAP database obtain the unweighted average recall (UAR) of 87.86 and 68.50%, respectively, which are better than most popular SER methods and demonstrate the effectiveness of our propose method.

link to paper

Requirements

The project has been tested on a python=3.7 on Ubuntu 20.04 with the following packages:

tensorflow=2.7.0
librosa=0.8.1
scikit-learn=1.0.1

Uses librosa to read files, which needs sndfile.
Use sudo apt-get install libsndfile1 to install sndfile library

Usage

This repository can be used in the following ways:

  1. Using train.py.
    i. Download the RAVDESS dataset (only this dataset is supported as of now) and extract it within the dataset directory. Then run the commands below to move all files into the .dataset/ directory from indivisual sub folders like .dataset/Actor-xx. Run these from within the dataset directory. Make sure to be in the .dataset/ directory before running these comannds from a linux terminal.
    find . -mindepth 2 -type f -print -exec mv {} . \;  
    rm -r Actor_*
    Then 
    
    ii. Run train.py with required options. Use python train.py -h to check all options available. A saved_model will be put in the saved_model directory.
    iii. Use infer.py to run inference on a set of files.
  2. Using SpeechModel.py to get a Keras Model into your code. This model follows specifications mentioned in the paper. You may write your own dataset code.
    Example:
    # Your own dataset architecture
    from SpeechModel import SpeechModel
    SP = SpeechModel
    model = SP.create_model()
    # Rest of model training code
    
  3. Using just the load_wav and get_framed_log_melspectrogram functions from utils.py, you can write your own dataset funcion, as well as your own model. This function returns a (num_frames, 64, 64, 3) shaped array that can be fed to a TimeDistributed network of your choice.

Model Description

The model uses a TimeDistributed layer to feed all segments of a audio file that have been converted into 3 channel images to a pretrained CNN network (in this case, resnet50_v2, trained on imagenet). Following this, we have bi-lstm layers and attention layers. Then, there are Fully Connected Layers with dropout and finally, classification with 8 nodes.


(Image credits: Paper cited below)

Example usage

Training

  • Use python train.py -h to see a list of arguments.
  • python train.py 30 to train the model for 30 epochs

Inference

(Still to be implemented)

Limitations

  1. Currently this repo only supports dataset preparation for the RAVDESS model since different datasets describe their labels differently. You can still use this repo with other datasets by defining your own function to load the datasets and using the get_framed_log_melspectrograms function from utils.py.
    Then you may use SpeechModel.py to create a model based on specifications form the paper and train.
  2. Since I couldn't find a pretrained AlexNet model and didn't have the resources myself to train one from scratch, I used a pretrained ResNet 50 model. This may affect the performance and not match the results given by the authors.

Credits and acknowledgements:

I did this work for a hackathon. This method did not produce the best results for my use case. I suspect this was due to the dataset being very noisy.

Citation

AUTHOR=Zhang Hua, Gou Ruoyun, Shang Jili, Shen Fangyao, Wu Yifan, Dai Guojun
    
TITLE=Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition  
    
JOURNAL=Frontiers in Physiology     
    
VOLUME=12      
    
YEAR=2021
    
PAGES=177   
        
URL=https://www.frontiersin.org/article/10.3389/fphys.2021.643202     
    
DOI=10.3389/fphys.2021.643202    
    
ISSN=1664-042X   

ABSTRACT=Speech emotion recognition (SER) is a difficult and challenging task because of the affective variances between different speakers. The performances of SER are extremely reliant on the extracted features from speech signals. To establish an effective features extracting and classification model is still a challenging task. In this paper, we propose a new method for SER based on Deep Convolution Neural Network (DCNN) and Bidirectional Long Short-Term Memory with Attention (BLSTMwA) model (DCNN-BLSTMwA). We first preprocess the speech samples by data enhancement and datasets balancing. Secondly, we extract three-channel of log Mel-spectrograms (static, delta, and delta-delta) as DCNN input. Then the DCNN model pre-trained on ImageNet dataset is applied to generate the segment-level features. We stack these features of a sentence into utterance-level features. Next, we adopt BLSTM to learn the high-level emotional features for temporal summarization, followed by an attention layer which can focus on emotionally relevant features. Finally, the learned high-level emotional features are fed into the Deep Neural Network (DNN) to predict the final emotion. Experiments on EMO-DB and IEMOCAP database obtain the unweighted average recall (UAR) of 87.86 and 68.50%, respectively, which are better than most popular SER methods and demonstrate the effectiveness of our propose method.
Owner
Ankush Malaker
Result driven, deep learning engineer with a passion to solve problems using computers and deep learning.
Ankush Malaker
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022