RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

Related tags

Deep Learningru-dolph
Overview

[Paper] [Хабр] [Model Card] [Colab] [Kaggle]

RuDOLPH 🦌 🎄 ☃️

One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP


Russian Diffusion On Language Picture Hyper-modality (RuDOLPH) is a fast and light text-image-text transformer (350M GPT-3) designed for a quick and easy fine-tuning setup for the solution of various tasks: from generating images by text description and image classification to visual question answering and more. This model demonstrates the power of Hyper-modality Transformers.

(!!!) Hyper-modality means generalized multi-modal, e.g., model that consists of two multi-modal parts: text-2-image and image-2-text becomes text and image hyper-modality model

Sparse Attention Mask

row - col - row - [last] conv

Models

Installing

pip install rudolph==0.0.1rc8

Usage

Fine-Tuning example by @Alex Wortega Open In Colab

Init models

from rudalle import get_tokenizer, get_vae
from rudalle.utils import seed_everything
from rudalle.image_prompts import ImagePrompts

from rudolph.model import get_rudolph_model
from rudolph.pipelines import zs_clf, generate_codebooks, self_reranking_by_image, self_reranking_by_text, show, generate_captions, generate_texts
from rudolph import utils

device = 'cuda'
model = get_rudolph_model('350M', fp16=True, device=device)
model.to(device);
tokenizer = get_tokenizer()
vae = get_vae(dwt=False).to(device)

Setup for Fast Image Generation

text = 'старинный будильник многоугольной формы'
bs, images_num = 48, 48
top_k, top_p = 512, 0.9
with torch.no_grad():
    codebooks = generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs)
    ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=bs)
    images = vae.decode(codebooks[ppl_text.argsort()[:9]])
images = torchvision.utils.make_grid(images, nrow=3)
img = torchvision.transforms.functional.to_pil_image(images)
img

Text Generation

generate_texts(
    tokenizer,
    model,
    template='красивый пейзаж ',
    top_k=32, top_p=0.8, texts_num=32, bs=32, seed=42
)[:8]

[{'text': 'красивый пейзаж и деревья в горах с синим небом и облаками в солнечный день. карпаты украина', 'ppl': 155.72},
 {'text': 'красивый пейзаж с горным озером и красивым пейзажем на восходе солнца', 'ppl': 195.81},
 {'text': 'красивый пейзаж с горными вершинами и чистым небом', 'ppl': 219.57},
 {'text': 'красивый пейзаж с горами в тумане, покрывающими горы', 'ppl': 221.36},
 {'text': 'красивый пейзаж и водопад в национальном парке пхутта в таиланде', 'ppl': 248.82},
 {'text': 'красивый пейзаж с голубым небом и белым облаком', 'ppl': 260.76},
 {'text': 'красивый пейзаж с рекой, горы и голубое небо', 'ppl': 273.1},
 {'text': 'красивый пейзаж с зелеными деревьями и голубым небом', 'ppl': 286.22}]

Image Generation + Self Reranking

text = 'красивый пейзаж с озером и лесом на заднем плане'
images_num, bs = 256, 32
seed_everything(42)
codebooks = []
for top_k, top_p, images_num in [
    (2048, 0.975, images_num),
    (1536, 0.975, images_num),
    (1024, 0.975, images_num),
]:
    codebooks.append(generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs))

codebooks = torch.cat(codebooks)

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=bs)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

text = 'зимнее время года'

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=32)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

text = 'ночное время суток'

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=32)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

Image Prompt (like Inpainting)

text = 'лодка с алыми парусами'

images_num = 1024
bs = 32

borders = {'up': 6, 'left': 4, 'right': 6, 'down': 2}
image_prompts = ImagePrompts(pil_img, borders, vae, device, crop_first=True)

seed_everything(42)
codebooks = []
for top_k, top_p, images_num in [
    (1024, 0.99, images_num),
]:
    codebooks.append(
        generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs, image_prompts=image_prompts)
    )

codebooks = torch.cat(codebooks)

ppl_text, ppl_image = self_reranking_by_text(
    text,
    codebooks,
    tokenizer,
    model,
    bs=bs,
)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

Diffusion (TODO, see Colab)

Image Captioning + Self Reranking

texts = generate_captions(pil_img, tokenizer, model, vae, template='на картинке ', top_k=16, captions_num=128, bs=32, top_p=0.6, temperature=0.8, seed=43, limit_eos=False)
ppl_text, ppl_image = self_reranking_by_image(texts, pil_img, tokenizer, model, vae, bs=32, seed=42)
for idx in ppl_image.argsort()[:8]:
    print(f'-{texts[idx]}')

-на картинке изображено - каяк с плавающей на нем женщиной
-на картинке - лодка с призраками
-на картинке корабль « », вид с воздуха
-на картинке лодка с парусом и 3d эффектом, вид с воздуха
-на картинке лодка с привидениями, вид сверху
-на картинке подводная лодка «акула», вид с воздуха
-на картинке изображено - надувная лодка с жестким дном
-на картинке с сайта esquire, изображен маленький красный корабль

-на картинке собака с длинными ушами, вид спереди
-на картинке собака с большими ушами и с длинными лапами, вид спереди
-на картинке собака с большими ушами и мордой собаки, вид спереди
-на картинке собака с белой гривой, вид спереди собака с коричневым цветом
-на картинке собака с большими ушами и собака с большими ушами, вид спереди
-на картинке собака с большими ушами и коричневым мехом, вид спереди
-на картинке собака с белой гривой, вид спереди собака с белой гривой
-на картинке собака с большими ушами и длинными ушами, вид спереди

-на картинке изображен жилой комплекс «арбат»
-на картинке видно здание с окнами в центре города
-на картинке изображен жилой дом с видом на улицу
-на картинке виднеется здание в центре города
-на картинке изображен вид на жилой комплекс, вид с улицы
-на картинке видна башня банка сбербанка
-на картинке изображен фасад здания с окнами в центре города
-на картинке виднеется здание с балконом

-на картинке мотоцикл иж юпитер вариант с мотором от иж юпитер, вид сзади
-на картинке мотоцикл с мотором и мотором с мотором от мотоцикла, вид сбоку
-на картинке изображен мотоцикл с кузовом из фильма «бэтмен против супермена», вид спереди
-на картинке велосипед с велосипедом в гараже, вид спереди
-на картинке мотоцикл с мотоциклом «мотоцикл» вид сзади, вид спереди
-на картинке велосипед с корзиной для покупок, вид сзади
-на картинке велосипед с мотором от мотоцикла иж юпитер вариант 2 варианта, вид сбоку
-на картинке мотоцикл с мотоциклом « », вид спереди

Zero-Shot Image Classification using PPL

import base64
import requests
from PIL import Image
from io import BytesIO

bs4_urls = requests.get('https://raw.githubusercontent.com/sberbank-ai/ru-dolph/master/pics/pipelines/cats_vs_dogs_bs4.json').json()

f, ax = plt.subplots(2,4, figsize=(12,6))

for i, bs4_url in enumerate(bs4_urls):
    pil_img = Image.open(BytesIO(base64.b64decode(bs4_url)))
    
    classes = ['кошка', 'собака']
    preds = zs_clf(
        pil_img, 
        classes,
        model, 
        tokenizer,
        vae,
        template = '{}', 
    )
    ax[i//4, i%4].imshow(pil_img)
    ax[i//4, i%4].set_title(preds['class'])

Linear Probe (TODO, see Colab)

Authors:

Drawing Drawing

Citation

@article{shonenkov2022ruDolph,
  title         = {RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP},
  author        = {Alex Shonenkov and Michael Konstantinov},
  year          = {2022},
  eprint        = {...},
  archivePrefix = {arXiv},
  primaryClass  = {cs.CL}
}
@misc{github2022ruDolph,
  title         = {RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP},
  author        = {Alex Shonenkov and Michael Konstantinov},
  year          = {2022},
  howpublished  = {\url{https://github.com/sberbank-ai/ru-dolph}},
}

Supported by

Owner
AI Forever
Creating ML for the future. AI projects you already know. We are non-profit organization with members from all over the world.
AI Forever
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022