SANet: A Slice-Aware Network for Pulmonary Nodule Detection

Related tags

Deep LearningSANet
Overview

SANet: A Slice-Aware Network for Pulmonary Nodule Detection

This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021.

This code and our data are licensed for non-commerical research purpose only.

Introduction

Lung cancer is the most common cause of cancer death worldwide. A timely diagnosis of the pulmonary nodules makes it possible to detect lung cancer in the early stage, and thoracic computed tomography (CT) provides a convenient way to diagnose nodules. However, it is hard even for experienced doctors to distinguish them from the massive CT slices. The currently existing nodule datasets are limited in both scale and category, which is insufficient and greatly restricts its applications. In this paper, we collect the largest and most diverse dataset named PN9 for pulmonary nodule detection by far. Specifically, it contains 8,798 CT scans and 40,439 annotated nodules from 9 common classes. We further propose a slice-aware network (SANet) for pulmonary nodule detection. A slice grouped non-local (SGNL) module is developed to capture long-range dependencies among any positions and any channels of one slice group in the feature map. And we introduce a 3D region proposal network to generate pulmonary nodule candidates with high sensitivity, while this detection stage usually comes with many false positives. Subsequently, a false positive reduction module (FPR) is proposed by using the multi-scale feature maps. To verify the performance of SANet and the significance of PN9, we perform extensive experiments compared with several state-of-the-art 2D CNN-based and 3D CNN-based detection methods. Promising evaluation results on PN9 prove the effectiveness of our proposed SANet.

SANet

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{21PAMI-SANet,
title={SANet: A Slice-Aware Network for Pulmonary Nodule Detection},
author={Jie Mei and Ming-Ming Cheng and Gang Xu and Lan-Ruo Wan and Huan Zhang},
journal={IEEE transactions on pattern analysis and machine intelligence},
year={2021},
publisher={IEEE},
doi={10.1109/TPAMI.2021.3065086}
}

Requirements

The code is built with the following libraries:

Besides, you need to install a custom module for bounding box NMS and overlap calculation.

cd build/box
python setup.py install

Data

Our new pulmonary nodule dataset PN9 is available now, please refer to here for more information.

Note: Considering the big size of raw data, we provide the PN9 dataset (after preprocessing as described in Sec. 5.2 of our paper) with two formats: .npy files and .jpg images. The data preprocessing contains spatially normalized (including the imaging thickness and spacing, the normalized data is 1mm x 1mm x 1mm.) and transforming the data into [0, 255]. The .npy files store the exact values of the corresponding samples while the .jpg images store the compressed ones. The .jpg version of our dataset is provided with the consideration of reducing the size of PN9 for more convenient distribution over the internet. We have done several ablation experiments on both versions of PN9 (i.e., .npy and .jpg), and the difference between the results basing on different data formats is little.

Download the PN9 and add the information to config.py.

Testing

The pretrained model of SANet with npy files can be downloaded here.

Run the following scripts to evaluate the model and obtain the results of FROC analysis.

python test.py --weight='./results/model/model.ckpt' --out_dir='./results/' --test_set_name='./test.txt'

Training

This implementation supports multi-gpu, data_parallel training.

Change training configuration and data configuration in config.py, especially the path to preprocessed data.

Run the training script:

python train.py

Contact

For any questions, please contact me via e-mail: [email protected].

Acknowledgment

This code is based on the NoduleNet codebase.

Owner
Jie Mei
PhD
Jie Mei
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022