Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

Overview

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to myself. After playing with computers and numbers for nearly 4 decades, I've also made this to keep in mind how to have fun with computers and maths.

Using Jupyter notebooks as an interactive learning medium, this series provides an introduction to:

  • Computer Science
  • Python programming language
  • Numerical computing
  • Numbers theory
  • Prime numbers
  • Data visualization
  • Deep learning

Interactive in Mybinder:

Binder

Interative in Azure (requires logging in):

Static in Nbviewer:

Use the link provided for each part below the corresponding title.

Launch in Binder (no login required)

Click the badge in the corresponding part below.

Part 1 : Introduction

Start learning here or

Binder

What you will learn:

  • print is the command to print something on the screen
  • Math operations are very easy to perform in Python
  • Python deals with numbers based on data types
  • In Python there are two numerical data types; int and float
  • Functions are powerful tools to easily perform various operations
  • Functions may accept arguments (parameters) as input
  • Functions are computer processes, and arguments are what is being processed
  • It's very easy to create your own functions

Part 2 : Prime Numbers

Continue learning here.

Binder

What you will learn:

  • Prime numbers relate with divisibility
  • Divisibility means that when one number is divided by other, the product is not a whole number
  • A prime number is any number that is divisible only by itself and 1
  • Binary means 0 and 1
  • Boolean logic is the binary language of computers
  • Python gives us an easy to use way to instruct computers
  • Boolean logic statements involve is, is not, and and or statements
  • Boolean statements can be joined together
  • Boolean statements always return either True or False as output
  • It's easy to perform computing operations with small numbers
  • The biggest prime number is a really big number
  • Very big numbers require vast networks of computers joined together

Part 3 : Algorithms Overview

Continue learning here.

Binder

What you will learn:

  • Algoritms are like insides of factories
  • Algoritms process inputs to produce outputs
  • Conditional statements are a tool for putting boolean logic in to action
  • Conditional statements are part of "flow control"
  • Flow controls give us the ability to create rules for computer programs
  • The three conditional statements in Python are if, else and elif
  • Even just if alone can be used to create a conditional statement

Part 4: Automation Overview

Continue learning here.

Binder

What you will learn:

  • Generally speaking computer programs are focused on process automation
  • Loops are a highly effective method for automation
  • With small changes to our code, we can make big improvements in capability
  • Sometimes we can get more done with less code!
  • It's very convinient to store values in to memory
  • Computer memory is nothing like human memory, and also not like a safe deposit box
  • Any value can be stored in to memory
  • Numbers can be automatically generated with range function
  • It's meaningful to learn new concepts by gradually improving things

CREDITS

Numerical Computing is Fun is an Eka Foundation project.

Owner
EKA foundation
EKA foundation
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023