Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Related tags

Deep LearningFeedBack
Overview

Kaggle Feedback Prize - Evaluating Student Writing 15th solution


First of all, I would like to thank the excellent notebooks and discussions from https://www.kaggle.com/abhishek/two-longformers-are-better-than-1 @abhishek https://www.kaggle.com/c/feedback-prize-2021/discussion/308992 @hengck23 https://www.kaggle.com/librauee/infer-fast-ensemble-models @librauee I learned a lot from their work. This is the second kaggle competition we have participated in, and although we are one short of gold, we are already very satisfied. In our work, I am mainly responsible for the training of the model, and @yscho1 is mainly responsible for the post-processing.

Highlight

  • In the final commit, we ensemble 6 debreta_xlarge, 6 longformer-large-4096, 2 funnel-large, 2 deberta-v3-large and 2 deberta-large. We set the max_length to 1600. We use Fast Gradient Method(FGM) to improve robustness and use Exponential Moving Average(EMA) to smooth training.

  • Use optuna to learn all the hyperparameters in the post processing stage.

  • CV results show that deberta-xlarge(0.7092) > deberta-large(0.7025) > deberta-large-v3(0.6842) > funnel-large(0.6798) = longformer-large-4096(0.6748)

  • Merge consecutive predictions with same label, for example we merge [B-Lead, I-Lead, I-Lead], [B-Lead, I-Lead] into one single prediction. We only do this operation when the label is in ['Lead', 'Position', 'Concluding', 'Rebuttal'], since there are not consecutive predictions for these labels in the training data.

  • Filter "Lead" and "Concluding". There are only one Lead label and Concluding Label in almost all the trainging data, so we only keep the predictions that has higher score than threshold. Besides, we found that merge two Lead can increase cv further.

concluding_df = sorted(concluding_df, key=lambda x: np.mean(x[4]), reverse=True)
new_begin = min(concluding_df[0][3][0], concluding_df[1][3][0])
new_end = max(concluding_df[0][3][-1], concluding_df[1][3][-1])
  • Since the score is based on the overlap between prediction and ground truth, so we extend the predictions from word_list[begin:end] to word_list[begin - 1: end + 1]. Hoping the extended predictions can better hit ground truth and accross the 50% threshold.

  • Scaling. The probabilities of each token are multiplied by a factor. The factors are obtained through genetic algorithm search.

  • There are some other attempts but didn't work well. These attempts are included in the inference notebook.

Code

# Model Training
bash script/run_Base_train_gpu.sh
# Model Predict
bash script/run_predict.sh
# Params Learning
bash script/run_params_test.sh
Owner
Lingyuan Zhang
Lingyuan Zhang
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022