Official PyTorch implementation of RIO

Overview

NVIDIA Source Code License Python 3.6

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection

Figure 1: Our proposed Resampling at image-level and obect-level (RIO).

Project page | Paper

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection.
Nadine Chang, Zhiding Yu, Yu-Xiong Wang, Anima Anandkumar, Sanja Fidler, Jose M. Alvarez.
ICML 2021.

This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for RIO.

Abstract

Training on datasets with long-tailed distributions has been challenging for major recognition tasks such as classification and detection. To deal with this challenge, image resampling is typically introduced as a simple but effective approach. However, we observe that long-tailed detection differs from classification since multiple classes may be present in one image. As a result, image resampling alone is not enough to yield a sufficiently balanced distribution at the object level. We address object-level resampling by introducing an object-centric memory replay strategy based on dynamic, episodic memory banks. Our proposed strategy has two benefits: 1) convenient object-level resampling without significant extra computation, and 2) implicit feature-level augmentation from model updates. We show that image-level and object-level resamplings are both important, and thus unify them with a joint resampling strategy (RIO). Our method outperforms state-of-the-art long-tailed detection and segmentation methods on LVIS v0.5 across various backbones.

Requirements

  • Linux or maxOS with Python >= 3.6
  • PyTorch >= 1.5 and torchvision corresponding to PyTorch installation. Please refer to download guildlines at the PyTorch website
  • Detectron2
  • OpenCV is optional but required for visualizations

Installation

Detectron2

Please refer to the installation instructions in Detectron2.

We use Detectron2 v0.3 as the codebase. Thus, we advise installing Detectron2 from a clone of this repository.

LVIS Dataset

Dataset download is available at the official LVIS website. Please follow Detectron's guildlines on expected LVIS dataset structure.

Our Setup

  • Python 3.6.9
  • PyTorch 1.5.0 with CUDA 10.2
  • Detectron2 built from this repository.

Pretrained Models

Detection and Instance Segmentation on LVIS v0.5

Backbone Method AP.b AP.b.r AP.b.c AP.b.f AP.m AP.m.r AP.m.c AP.m.f download
R50-FPN MaskRCNN-RIO 25.7 17.2 25.1 29.8 26.0 18.9 26.2 28.5 model
R101-FPN MaskRCNN-RIO 27.3 19.1 26.8 31.2 27.7 20.1 28.3 30.0 model
X101-FPN MaskRCNN-RIO 28.6 19.0 28.0 33.0 28.9 19.5 29.7 31.6 model

Training & Evaluation

Our code is located under projects/RIO.

Our training and evaluation follows those of Detectron2's. We've provided config files for both LVISv0.5 and LVISv1.0.

Example: Training LVISv0.5 on Mask-RCNN ResNet-50

# We advise multi-gpu training
cd projects/RIO
python memory_train_net.py \
--num-gpus 4 \
--config-file=configs/LVISv0.5-InstanceSegmentation/memory_mask_rcnn_R_50_FPN_1x.yaml 

Example: Evaluating LVISv0.5 on Mask-RCNN ResNet-50

cd projects/RIO
python memory_train_net.py \
--eval-only MODEL.WEIGHTS /path/to/model_checkpoint \
--config-file configs/LVISv0.5-InstanceSegmentation/memory_mask_rcnn_R_50_FPN_1x.yaml  

By default, LVIS evaluation follows immediately after training.

Visualization

Detectron2 has built-in visualization tools. Under tools folder, visualize_json_results.py can be used to visualize the json instance detection/segmentation results given by LVISEvaluator.

python visualize_json_results.py --input x.json --output dir/ --dataset lvis

Further information can be found on Detectron2 tools' README.

License

Please check the LICENSE file. RIO may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

@article{chang2021image,
  title={Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection},
  author={Chang, Nadine and Yu, Zhiding and Wang, Yu-Xiong and Anandkumar, Anima and Fidler, Sanja and Alvarez, Jose M},
  journal={arXiv preprint arXiv:2104.05702},
  year={2021}
}
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
LBK 20 Dec 02, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022