SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

Overview

SuMa++: Efficient LiDAR-based Semantic SLAM

This repository contains the implementation of SuMa++, which generates semantic maps only using three-dimensional laser range scans.

Developed by Xieyuanli Chen and Jens Behley.

SuMa++ is built upon SuMa and RangeNet++. For more details, we refer to the original project websites SuMa and RangeNet++.

An example of using SuMa++: ptcl

Table of Contents

  1. Introduction
  2. Publication
  3. Dependencies
  4. Build
  5. How to run
  6. More Related Work
  7. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper:

@inproceedings{chen2019iros, 
		author = {X. Chen and A. Milioto and E. Palazzolo and P. Giguère and J. Behley and C. Stachniss},
		title  = {{SuMa++: Efficient LiDAR-based Semantic SLAM}},
		booktitle = {Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)},
		year = {2019},
		codeurl = {https://github.com/PRBonn/semantic_suma/},
		videourl = {https://youtu.be/uo3ZuLuFAzk},
}

Dependencies

  • catkin
  • Qt5 >= 5.2.1
  • OpenGL >= 4.0
  • libEigen >= 3.2
  • gtsam >= 4.0 (tested with 4.0.0-alpha2)

In Ubuntu 16.04: Installing all dependencies should be accomplished by

sudo apt-get install build-essential cmake libgtest-dev libeigen3-dev libboost-all-dev qtbase5-dev libglew-dev libqt5libqgtk2 catkin

Additionally, make sure you have catkin-tools and the fetch verb installed:

sudo apt install python-pip
sudo pip install catkin_tools catkin_tools_fetch empy

Build

rangenet_lib

To use SuMa++, you need to first build the rangenet_lib with the TensorRT and C++ interface. For more details about building and using rangenet_lib you could find in rangenet_lib.

SuMa++

Clone the repository in the src directory of the same catkin workspace where you built the rangenet_lib:

git clone https://github.com/PRBonn/semantic_suma.git

Download the additional dependencies (or clone glow into your catkin workspace src yourself):

catkin deps fetch

For the first setup of your workspace containing this project, you need:

catkin build --save-config -i --cmake-args -DCMAKE_BUILD_TYPE=Release -DOPENGL_VERSION=430 -DENABLE_NVIDIA_EXT=YES

Where you have to set OPENGL_VERSION to the supported OpenGL core profile version of your system, which you can query as follows:

$ glxinfo | grep "version"
server glx version string: 1.4
client glx version string: 1.4
GLX version: 1.4
OpenGL core profile version string: 4.3.0 NVIDIA 367.44
OpenGL core profile shading language version string: 4.30 NVIDIA [...]
OpenGL version string: 4.5.0 NVIDIA 367.44
OpenGL shading language version string: 4.50 NVIDIA

Here the line OpenGL core profile version string: 4.3.0 NVIDIA 367.44 is important and therefore you should use -DOPENGL_VERSION = 430. If you are unsure you can also leave it on the default version 330, which should be supported by all OpenGL-capable devices.

If you have a NVIDIA device, like a Geforce or Quadro graphics card, you should also activate the NVIDIA extensions using -DENABLE_NVIDIA_EXT=YES for info about the current GPU memory usage of the program.

After this setup steps, you can build with catkin build, since the configuration has been saved to your current Catkin profile (therefore, --save-config was needed).

Now the project root directory (e.g. ~/catkin_ws/src/semantic_suma) should contain a bin directory containing the visualizer.

How to run

Important Notice

  • Before running SuMa++, you need to first build the rangenet_lib and download the pretrained model.
  • You need to specify the model path in the configuration file in the config/ folder.
  • For the first time using, rangenet_lib will take several minutes to build a .trt model for SuMa++.
  • SuMa++ now can only work with KITTI dataset, since the semantic segmentation may not generalize well in other environments.
  • To use SuMa++ with your own dataset, you may finetune or retrain the semantic segmentation network.

All binaries are copied to the bin directory of the source folder of the project. Thus,

  1. run visualizer in the bin directory by ./visualizer,
  2. open a Velodyne directory from the KITTI Visual Odometry Benchmark and select a ".bin" file,
  3. start the processing of the scans via the "play button" in the GUI.

More Related Work

OverlapNet - Loop Closing for 3D LiDAR-based SLAM

This repo contains the code for our RSS2020 paper: OverlapNet - Loop Closing for 3D LiDAR-based SLAM.

OverlapNet is a modified Siamese Network that predicts the overlap and relative yaw angle of a pair of range images generated by 3D LiDAR scans, which can be used for place recognition and loop closing.

Overlap-based LiDAR Global Localization

This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

It uses the OverlapNet to train an observation model for Monte Carlo Localization and achieves global localization with 3D LiDAR scans.

License

Copyright 2019, Xieyuanli Chen, Jens Behley, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Fang Zhonghao 13 Nov 19, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022