Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Overview

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance

[Video Demo] [Paper]

Installation

Requirements

  • Python 3.6
  • PyTorch 1.1.0

Please clone this repository and run the following command:

pip install -r requirements.txt

Then, download some checkpoints and human body models, and place them in the human_motion_prior/models.

Specifically,

  • Download the pretrained VPoser v1.0 model (2.5 MB) here.
  • Download the SMPLH model here.
  • Download the SMPL model here for MALE and FEMALE and here for NEUTRAL.
  • Download the regressor weights files 1) J_regressor_h36m.npy and 2) J_regressor_extra.npy here.

The models tree is like:

human_motion_prior/models
├── smpl
│   ├── SMPL_FEMALE.pkl
│   └── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
│   └── J_regressor_h36m.npy
│   └── J_regressor_extra.npy
├── smplh
│   ├── SMPLH_FEMALE_AMASS.npz
│   └── SMPLH_MALE_AMASS.npz
|   └── SMPLH_MEUTRAL_AMASS.npz
├── pre_trained
    └── vposer_v1_0

Data Pre-process

Follow the instruction here.

Training

cd human_motion_prior/train
sh run_script.sh 4

We train our human motion prior on 4 GTX 1080Ti gpus with batch size 15 per gpu.

You can modify the human_motion_prior/train/motion_prior_defaults.ini for different training setting.

Inference

You can use the motion prior trained on AMASS to evaluate the VAE reconstruction loss on unseen 3DPW dataset as follows:

cd human_motion_prior/test
export PYTHONPATH=../../
python test_3dpw.py

Citation

@inproceedings{human_motion_prior,
  title = {Exploring Versatile Prior for Human Motion via Motion Frequency Guidance},
  author = {Jiachen Xu, Min Wang, Jingyu Gong, Wentao Liu, Chen Qian, Yuan Xie, Lizhuang Ma},
  booktitle = {2021 international conference on 3D vision (3DV)},
  year = {2021}
}

Acknowledgments

We thank the authors of VPoser for their released code.

Owner
Jiachen Xu
Jiachen Xu
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022