This is a demo app to be used in the video streaming applications

Related tags

Deep LearningMoViDNN
Overview

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks

MoViDNN is an Android application that can be used to evaluate DNN based video quality enhancements for mobile devices. We provide the structure to evaluate both super-resolution, and denoising/deblocking DNNs in this application. However, the structure can be extended easily to adapt to additional approaches such as video frame interpolation.

Moreover, MoViDNN can also be used as a Subjective test environment to evaulate DNN based enhancements.

We use tensorflow-lite as the DNN framework and FFMPEG for the video processing.

We also provide a Python repository that can be used to convert existing Tensorflow/Keras models to tensorflow-lite versions for Android. Preparation

DNN Evaluation

MoViDNN can be used as a platform to evaluate the performance of video quality enhancement DNNs. It provides objective metrics (PSNR and SSIM) for the whole video along with measuring the execution performance of the device (execution time, executed frames per second).

DNN Configuration

This is the first screen of the DNN test and in this screen the DNN, the accelerator, and input videos are selected which then will be used during the DNN evaluation.

DNN Execution

Once the configuration is completed, DNN execution activity is run. It begins with extracting each frame from the input video using FFMpeg and saving them into a temporary folder. Afterward, the DNN is applied for each frame, and results are saved into another temporary folder. Once the DNN applied frames are ready, they are converted to a video using FFMpeg again. Finally, objective metric calculations are done with FFMpeg using the DNN applied video and the input video.

In this step, DNN applied video is saved into DNNResults/Videos/ folder, and CSV file containing objective metrics for each video is saved into DNNResults/Metrics/folder.

Adding New DNNs and Videos

MoVİDNN comes with 5 test videos, 2 SR models (ESPCN, EVSRNet), and one deblocking model (DnCNN). It is possible to add additional test videos and DNNs to MoViDNN.

To add a new DNN model, use the quantization script to prepare it for MoViDNN. Once it is done, you can put your model into /MoViDNN/Networks/folder on your mobile device's storage and it will be ready for evaluation. Similarly, if you want to add new test videos, you can simply move them into /MoViDNN/InputVideos/folder in your device storage.

MoViDNN
│
└───Networks
│   │   dncnn_x1.tflite
│   │   espcn_x2.tflite
│   │
│   │  <YourModel>.py
└───InputVideos
│   │   SoccerGame.mp4
│   │   Traffic.mp4
│   │
│   │  <YourVideo>.mp4
..

Subjective Evaluation

MoViDNN can also be used as a subjective test platform to evaluate the DNN applied videos. Once the DNN evaluation is done for a given network and the resulting video is saved, subjective test can be started.

In the first screen, instructions are shown to the tester. Once they are read carefully, the test can be started. Subjective test part of the MoViDNN displays all the selected videos in a random order. After each video, the tester is asked to rate the video quality from 1 to 5.

In the end, ratings are saved into a CSV file which can be used later.

Authors

  • Ekrem Çetinkaya - Christian Doppler Laboratory ATHENA, Alpen-Adria-Universitaet Klagenfurt - [email protected]
  • Minh Nguyen - Christian Doppler Laboratory ATHENA, Alpen-Adria-Universitaet Klagenfurt - [email protected]
Owner
ATHENA Christian Doppler (CD) Laboratory
Adaptive Streaming over HTTP and Emerging Networked Multimedia Services
ATHENA Christian Doppler (CD) Laboratory
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022