Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Related tags

Deep LearningBBI
Overview

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

This repository contains the code for the BBI optimizer, introduced in the paper Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization. 2201.11137. It is implemented using Pytorch.

The repository also includes the code needed to reproduce all the experiments presented in the paper. In particular:

  • The BBI optimizer is implemented in the file inflation.py.

  • The jupyter notebooks with the synthetic experiments are in the folder synthetic. All the notebooks already include the output, and text files with results are also included in the folder. In particular

    • The notebook ackley.ipynb can be used to reproduce the results in Sec. 4.1.
    • The notebook zakharov.ipynb can be used to reproduce the results in Sec. 4.2.
    • The notebook multi_basin.ipynb can be used to reproduce the results in Sec. 4.3.
  • The ML benchmarks described in Sec. 4.5 can be found in the folders CIFAR and MNIST. The notebooks already include some results that can be inspected, but not all the statistics that builds up the results in Table 2. In particular:

    • CIFAR : The notebook CIFAR-notebook.ipynb uses hyperopt to estimate the best hyperparameters for each optimizer and then runs a long run with the best estimated hyperparamers. The results can be analyzed with the notebook analysis-cifar.ipynb, which can also be used to generate more runs with the best hyperparameters to gather more statistics. The subfolder results already includes some runs that can be inspected.

    • MNIST: The notebooks mnist_scan_BBI.ipynb and mnist_scan_SGD.ipynb perform a grid scan using BBI and SGD, respectively and gather some small statistics. All the results are within the notebooks themselves.

  • The PDE experiments can be run by running the script script-PDE.sh as

    bash script-PDE.sh
    

    This will solve the PDE outlined in Sec. 4.4 and App. C multiple times with the same initialization. The hyperparameters are also kept fixed and can be obtained from the script itself. In particular:

    • feature 1 means that an L2 regularization is added to the loss.
    • seed specifies the seed, which fixes the initialization of the network. The difference between the different runs then is only due to the random bounces, which are not affected by this choice of the seed.

    The folder results already includes some runs. The runs performed in this way are not noisy, i.e. the set of points sampled from the domain is kept fixed. To randomly change the points every "epoch" (1000 iterations), edit the file experiments/PDE_PoissonD.py by changing line 134 to self.update_points = True.

The code has been tested with Python 3.9, Pytorch 1.10, hyperopt 0.2.5. We ran the synthetic experiments and MNIST on a six-core i7-9850H CPU with 16 GB of RAM, while we ran the CIFAR and PDE experiments on a pair of GPUs. We tested both on a pair of NVIDIA GeForce RTX 2080 Ti and on a pair of NVIDIA Tesla V100-SXM2-16GB GPUs, coupled with 32 GB of RAM and AMD EPYC 7502P CPUs.

The Resnet-18 code (in experiments/models) and the utils.py helper functions are adapted from https://github.com/kuangliu/pytorch-cifar (MIT License).

Owner
G. Bruno De Luca
G. Bruno De Luca
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022