Semantic Segmentation Suite in TensorFlow

Overview

Semantic Segmentation Suite in TensorFlow

alt-text-10

News

What's New

  • This repo has been depricated and will no longer be handling issues. Feel free to use as is :)

Description

This repository serves as a Semantic Segmentation Suite. The goal is to easily be able to implement, train, and test new Semantic Segmentation models! Complete with the following:

  • Training and testing modes
  • Data augmentation
  • Several state-of-the-art models. Easily plug and play with different models
  • Able to use any dataset
  • Evaluation including precision, recall, f1 score, average accuracy, per-class accuracy, and mean IoU
  • Plotting of loss function and accuracy over epochs

Any suggestions to improve this repository, including any new segmentation models you would like to see are welcome!

You can also check out my Transfer Learning Suite.

Citing

If you find this repository useful, please consider citing it using a link to the repo :)

Frontends

The following feature extraction models are currently made available:

Models

The following segmentation models are currently made available:

Files and Directories

  • train.py: Training on the dataset of your choice. Default is CamVid

  • test.py: Testing on the dataset of your choice. Default is CamVid

  • predict.py: Use your newly trained model to run a prediction on a single image

  • helper.py: Quick helper functions for data preparation and visualization

  • utils.py: Utilities for printing, debugging, testing, and evaluation

  • models: Folder containing all model files. Use this to build your models, or use a pre-built one

  • CamVid: The CamVid datatset for Semantic Segmentation as a test bed. This is the 32 class version

  • checkpoints: Checkpoint files for each epoch during training

  • Test: Test results including images, per-class accuracies, precision, recall, and f1 score

Installation

This project has the following dependencies:

  • Numpy sudo pip install numpy

  • OpenCV Python sudo apt-get install python-opencv

  • TensorFlow sudo pip install --upgrade tensorflow-gpu

Usage

The only thing you have to do to get started is set up the folders in the following structure:

├── "dataset_name"                   
|   ├── train
|   ├── train_labels
|   ├── val
|   ├── val_labels
|   ├── test
|   ├── test_labels

Put a text file under the dataset directory called "class_dict.csv" which contains the list of classes along with the R, G, B colour labels to visualize the segmentation results. This kind of dictionairy is usually supplied with the dataset. Here is an example for the CamVid dataset:

name,r,g,b
Animal,64,128,64
Archway,192,0,128
Bicyclist,0,128, 192
Bridge,0, 128, 64
Building,128, 0, 0
Car,64, 0, 128
CartLuggagePram,64, 0, 192
Child,192, 128, 64
Column_Pole,192, 192, 128
Fence,64, 64, 128
LaneMkgsDriv,128, 0, 192
LaneMkgsNonDriv,192, 0, 64
Misc_Text,128, 128, 64
MotorcycleScooter,192, 0, 192
OtherMoving,128, 64, 64
ParkingBlock,64, 192, 128
Pedestrian,64, 64, 0
Road,128, 64, 128
RoadShoulder,128, 128, 192
Sidewalk,0, 0, 192
SignSymbol,192, 128, 128
Sky,128, 128, 128
SUVPickupTruck,64, 128,192
TrafficCone,0, 0, 64
TrafficLight,0, 64, 64
Train,192, 64, 128
Tree,128, 128, 0
Truck_Bus,192, 128, 192
Tunnel,64, 0, 64
VegetationMisc,192, 192, 0
Void,0, 0, 0
Wall,64, 192, 0

Note: If you are using any of the networks that rely on a pre-trained ResNet, then you will need to download the pre-trained weights using the provided script. These are currently: PSPNet, RefineNet, DeepLabV3, DeepLabV3+, GCN.

Then you can simply run train.py! Check out the optional command line arguments:

usage: train.py [-h] [--num_epochs NUM_EPOCHS]
                [--checkpoint_step CHECKPOINT_STEP]
                [--validation_step VALIDATION_STEP] [--image IMAGE]
                [--continue_training CONTINUE_TRAINING] [--dataset DATASET]
                [--crop_height CROP_HEIGHT] [--crop_width CROP_WIDTH]
                [--batch_size BATCH_SIZE] [--num_val_images NUM_VAL_IMAGES]
                [--h_flip H_FLIP] [--v_flip V_FLIP] [--brightness BRIGHTNESS]
                [--rotation ROTATION] [--model MODEL] [--frontend FRONTEND]

optional arguments:
  -h, --help            show this help message and exit
  --num_epochs NUM_EPOCHS
                        Number of epochs to train for
  --checkpoint_step CHECKPOINT_STEP
                        How often to save checkpoints (epochs)
  --validation_step VALIDATION_STEP
                        How often to perform validation (epochs)
  --image IMAGE         The image you want to predict on. Only valid in
                        "predict" mode.
  --continue_training CONTINUE_TRAINING
                        Whether to continue training from a checkpoint
  --dataset DATASET     Dataset you are using.
  --crop_height CROP_HEIGHT
                        Height of cropped input image to network
  --crop_width CROP_WIDTH
                        Width of cropped input image to network
  --batch_size BATCH_SIZE
                        Number of images in each batch
  --num_val_images NUM_VAL_IMAGES
                        The number of images to used for validations
  --h_flip H_FLIP       Whether to randomly flip the image horizontally for
                        data augmentation
  --v_flip V_FLIP       Whether to randomly flip the image vertically for data
                        augmentation
  --brightness BRIGHTNESS
                        Whether to randomly change the image brightness for
                        data augmentation. Specifies the max bightness change
                        as a factor between 0.0 and 1.0. For example, 0.1
                        represents a max brightness change of 10% (+-).
  --rotation ROTATION   Whether to randomly rotate the image for data
                        augmentation. Specifies the max rotation angle in
                        degrees.
  --model MODEL         The model you are using. See model_builder.py for
                        supported models
  --frontend FRONTEND   The frontend you are using. See frontend_builder.py
                        for supported models

Results

These are some sample results for the CamVid dataset with 11 classes (previous research version).

In training, I used a batch size of 1 and image size of 352x480. The following results are for the FC-DenseNet103 model trained for 300 epochs. I used RMSProp with learning rate 0.001 and decay 0.995. I did not use any data augmentation like in the paper. I also didn't use any class balancing. These are just some quick and dirty example results.

Note that the checkpoint files are not uploaded to this repository since they are too big for GitHub (greater than 100 MB)

Class Original Accuracy My Accuracy
Sky 93.0 94.1
Building 83.0 81.2
Pole 37.8 38.3
Road 94.5 97.5
Pavement 82.2 87.9
Tree 77.3 75.5
SignSymbol 43.9 49.7
Fence 37.1 69.0
Car 77.3 87.0
Pedestrian 59.6 60.3
Bicyclist 50.5 75.3
Unlabelled N/A 40.9
Global 91.5 89.6
Loss vs Epochs Val. Acc. vs Epochs
alt text-1 alt text-2
Original GT Result
alt-text-3 alt-text-4 alt-text-5
Owner
George Seif
Machine Learning Engineer | twitter.com/GeorgeSeif94
George Seif
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023