Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

Related tags

Deep LearningAdaFit
Overview

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral)

**Project Page | Arxiv **

Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Tengping jiang¹, Yuan Wang¹, Wenping Wang³, Bisheng Yang¹.

¹Wuhan University + ²The University of Hong Kong + ³Texas A&M University.

Requirements

we conduct the experiment in the following setting:

  • Ubuntu 16.04
  • CUDA 10.1
  • Python v3.7
  • Pytorch v1.4 & torchvision v0.5.0
  • matplotlib v2.2.4
  • numpy v1.17.4
  • tensorboardX v1.9
  • scikit-learn v0.21.3
  • scipy v1.3.2
  • urllib3 v1.25.8

How to use the code

Data praparation

you need to download PCPNet dataset and place it in ./data/

single-scale AdaFit (Train + Test on PCPNet):

python run_AdaFit_single_experiment_single_scale.py

Note that, the difference between single-scale verison of our AdaFit and DeepFit is the offset-learning part, which you only need to add the following code.:

# parameter

self.conv_bias = nn.Conv1d(128, 3, 1)

# train /test 

...
bias =  self.conv_bias(x)
bias[:,:,0] = 0
points = points + bias
...

AdaFit (Train + Test on PCPNet):

python run_AdaFit_single_experiment_multi_scale.py

Acknowledgement

The code is heavily based on DeepFit.

If you find our work useful in your research, please cite our paper. And please also cite the DeepFit paper.

@article{zhu2021adafit,
  title={AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds},
  author={Zhu, Runsong and Liu, Yuan and Dong, Zhen and Jiang, Tengping and Wang, Yuan and Wang, Wenping and Yang, Bisheng},
  journal={arXiv preprint arXiv:2108.05836},
  year={2021}
}

@article{ben2020deepfit,
  title={DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares},
  author={Ben-Shabat, Yizhak and Gould, Stephen},
  journal={arXiv preprint arXiv:2003.10826},
  year={2020}
}
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022