Tree LSTM implementation in PyTorch

Overview

Tree-Structured Long Short-Term Memory Networks

This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks by Kai Sheng Tai, Richard Socher, and Christopher Manning. On the semantic similarity task using the SICK dataset, this implementation reaches:

  • Pearson's coefficient: 0.8492 and MSE: 0.2842 using hyperparameters --lr 0.010 --wd 0.0001 --optim adagrad --batchsize 25
  • Pearson's coefficient: 0.8674 and MSE: 0.2536 using hyperparameters --lr 0.025 --wd 0.0001 --optim adagrad --batchsize 25 --freeze_embed
  • Pearson's coefficient: 0.8676 and MSE: 0.2532 are the numbers reported in the original paper.
  • Known differences include the way the gradients are accumulated (normalized by batchsize or not).

Requirements

  • Python (tested on 3.6.5, should work on >=2.7)
  • Java >= 8 (for Stanford CoreNLP utilities)
  • Other dependencies are in requirements.txt Note: Currently works with PyTorch 0.4.0. Switch to the pytorch-v0.3.1 branch if you want to use PyTorch 0.3.1.

Usage

Before delving into how to run the code, here is a quick overview of the contents:

  • Use the script fetch_and_preprocess.sh to download the SICK dataset, Stanford Parser and Stanford POS Tagger, and Glove word vectors (Common Crawl 840) -- Warning: this is a 2GB download!), and additionally preprocees the data, i.e. generate dependency parses using Stanford Neural Network Dependency Parser.
  • main.pydoes the actual heavy lifting of training the model and testing it on the SICK dataset. For a list of all command-line arguments, have a look at config.py.
    • The first run caches GLOVE embeddings for words in the SICK vocabulary. In later runs, only the cache is read in during later runs.
    • Logs and model checkpoints are saved to the checkpoints/ directory with the name specified by the command line argument --expname.

Next, these are the different ways to run the code here to train a TreeLSTM model.

Local Python Environment

If you have a working Python3 environment, simply run the following sequence of steps:

- bash fetch_and_preprocess.sh
- pip install -r requirements.txt
- python main.py

Pure Docker Environment

If you want to use a Docker container, simply follow these steps:

- docker build -t treelstm .
- docker run -it treelstm bash
- bash fetch_and_preprocess.sh
- python main.py

Local Filesystem + Docker Environment

If you want to use a Docker container, but want to persist data and checkpoints in your local filesystem, simply follow these steps:

- bash fetch_and_preprocess.sh
- docker build -t treelstm .
- docker run -it --mount type=bind,source="$(pwd)",target="/root/treelstm.pytorch" treelstm bash
- python main.py

NOTE: Setting the environment variable OMP_NUM_THREADS=1 usually gives a speedup on the CPU. Use it like OMP_NUM_THREADS=1 python main.py. To run on a GPU, set the CUDA_VISIBLE_DEVICES instead. Usually, CUDA does not give much speedup here, since we are operating at a batchsize of 1.

Notes

  • (Apr 02, 2018) Added Dockerfile
  • (Apr 02, 2018) Now works on PyTorch 0.3.1 and Python 3.6, removed dependency on Python 2.7
  • (Nov 28, 2017) Added frozen embeddings, closed gap to paper.
  • (Nov 08, 2017) Refactored model to get 1.5x - 2x speedup.
  • (Oct 23, 2017) Now works with PyTorch 0.2.0.
  • (May 04, 2017) Added support for sparse tensors. Using the --sparse argument will enable sparse gradient updates for nn.Embedding, potentially reducing memory usage.
    • There are a couple of caveats, however, viz. weight decay will not work in conjunction with sparsity, and results from the original paper might not be reproduced using sparse embeddings.

Acknowledgements

Shout-out to Kai Sheng Tai for the original LuaTorch implementation, and to the Pytorch team for the fun library.

Contact

Riddhiman Dasgupta

This is my first PyTorch based implementation, and might contain bugs. Please let me know if you find any!

License

MIT

Owner
Riddhiman Dasgupta
Deep Learning, Science Fiction, Comic Books
Riddhiman Dasgupta
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022