Tree LSTM implementation in PyTorch

Overview

Tree-Structured Long Short-Term Memory Networks

This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks by Kai Sheng Tai, Richard Socher, and Christopher Manning. On the semantic similarity task using the SICK dataset, this implementation reaches:

  • Pearson's coefficient: 0.8492 and MSE: 0.2842 using hyperparameters --lr 0.010 --wd 0.0001 --optim adagrad --batchsize 25
  • Pearson's coefficient: 0.8674 and MSE: 0.2536 using hyperparameters --lr 0.025 --wd 0.0001 --optim adagrad --batchsize 25 --freeze_embed
  • Pearson's coefficient: 0.8676 and MSE: 0.2532 are the numbers reported in the original paper.
  • Known differences include the way the gradients are accumulated (normalized by batchsize or not).

Requirements

  • Python (tested on 3.6.5, should work on >=2.7)
  • Java >= 8 (for Stanford CoreNLP utilities)
  • Other dependencies are in requirements.txt Note: Currently works with PyTorch 0.4.0. Switch to the pytorch-v0.3.1 branch if you want to use PyTorch 0.3.1.

Usage

Before delving into how to run the code, here is a quick overview of the contents:

  • Use the script fetch_and_preprocess.sh to download the SICK dataset, Stanford Parser and Stanford POS Tagger, and Glove word vectors (Common Crawl 840) -- Warning: this is a 2GB download!), and additionally preprocees the data, i.e. generate dependency parses using Stanford Neural Network Dependency Parser.
  • main.pydoes the actual heavy lifting of training the model and testing it on the SICK dataset. For a list of all command-line arguments, have a look at config.py.
    • The first run caches GLOVE embeddings for words in the SICK vocabulary. In later runs, only the cache is read in during later runs.
    • Logs and model checkpoints are saved to the checkpoints/ directory with the name specified by the command line argument --expname.

Next, these are the different ways to run the code here to train a TreeLSTM model.

Local Python Environment

If you have a working Python3 environment, simply run the following sequence of steps:

- bash fetch_and_preprocess.sh
- pip install -r requirements.txt
- python main.py

Pure Docker Environment

If you want to use a Docker container, simply follow these steps:

- docker build -t treelstm .
- docker run -it treelstm bash
- bash fetch_and_preprocess.sh
- python main.py

Local Filesystem + Docker Environment

If you want to use a Docker container, but want to persist data and checkpoints in your local filesystem, simply follow these steps:

- bash fetch_and_preprocess.sh
- docker build -t treelstm .
- docker run -it --mount type=bind,source="$(pwd)",target="/root/treelstm.pytorch" treelstm bash
- python main.py

NOTE: Setting the environment variable OMP_NUM_THREADS=1 usually gives a speedup on the CPU. Use it like OMP_NUM_THREADS=1 python main.py. To run on a GPU, set the CUDA_VISIBLE_DEVICES instead. Usually, CUDA does not give much speedup here, since we are operating at a batchsize of 1.

Notes

  • (Apr 02, 2018) Added Dockerfile
  • (Apr 02, 2018) Now works on PyTorch 0.3.1 and Python 3.6, removed dependency on Python 2.7
  • (Nov 28, 2017) Added frozen embeddings, closed gap to paper.
  • (Nov 08, 2017) Refactored model to get 1.5x - 2x speedup.
  • (Oct 23, 2017) Now works with PyTorch 0.2.0.
  • (May 04, 2017) Added support for sparse tensors. Using the --sparse argument will enable sparse gradient updates for nn.Embedding, potentially reducing memory usage.
    • There are a couple of caveats, however, viz. weight decay will not work in conjunction with sparsity, and results from the original paper might not be reproduced using sparse embeddings.

Acknowledgements

Shout-out to Kai Sheng Tai for the original LuaTorch implementation, and to the Pytorch team for the fun library.

Contact

Riddhiman Dasgupta

This is my first PyTorch based implementation, and might contain bugs. Please let me know if you find any!

License

MIT

Owner
Riddhiman Dasgupta
Deep Learning, Science Fiction, Comic Books
Riddhiman Dasgupta
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Akshat Surolia 2 May 11, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023