Model Zoo for AI Model Efficiency Toolkit

Overview

Qualcomm Innovation Center, Inc.

Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance. Results demonstrate that quantized models can provide good accuracy, comparable to floating point models. Together with results, we also provide recipes for users to quantize floating-point models using the AI Model Efficiency ToolKit (AIMET).

Table of Contents

Introduction

Quantized inference is significantly faster than floating-point inference, and enables models to run in a power-efficient manner on mobile and edge devices. We use AIMET, a library that includes state-of-the-art techniques for quantization, to quantize various models available in TensorFlow and PyTorch frameworks. The list of models is provided in the sections below.

An original FP32 source model is quantized either using post-training quantization (PTQ) or Quantization-Aware-Training (QAT) technique available in AIMET. Example scripts for evaluation are provided for each model. When PTQ is needed, the evaluation script performs PTQ before evaluation. Wherever QAT is used, the fine-tuned model checkpoint is also provided.

Tensorflow Models

Model Zoo

Network Model Source [1] Floating Pt (FP32) Model [2] Quantized Model [3] Results [4] Documentation
ResNet-50 (v1) GitHub Repo Pretrained Model See Documentation (ImageNet) Top-1 Accuracy
FP32: 75.21%
INT8: 74.96%
ResNet50.md
MobileNet-v2-1.4 GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 75%
INT8: 74.21%
MobileNetV2.md
EfficientNet Lite GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 74.93%
INT8: 74.99%
EfficientNetLite.md
SSD MobileNet-v2 GitHub Repo Pretrained Model See Example (COCO) Mean Avg. Precision (mAP)
FP32: 0.2469
INT8: 0.2456
SSDMobileNetV2.md
RetinaNet GitHub Repo Pretrained Model See Example (COCO) mAP
FP32: 0.35
INT8: 0.349
Detailed Results
RetinaNet.md
Pose Estimation Based on Ref. Based on Ref. Quantized Model (COCO) mAP
FP32: 0.383
INT8: 0.379,
Mean Avg.Recall (mAR)
FP32: 0.452
INT8: 0.446
PoseEstimation.md
SRGAN GitHub Repo Pretrained Model See Example (BSD100) PSNR/SSIM
FP32: 25.45/0.668
INT8: 24.78/0.628
INT8W/INT16Act.: 25.41/0.666
Detailed Results
SRGAN.md

[1] Original FP32 model source
[2] FP32 model checkpoint
[3] Quantized Model: For models quantized with post-training technique, refers to FP32 model which can then be quantized using AIMET. For models optimized with QAT, refers to model checkpoint with fine-tuned weights. 8-bit weights and activations are typically used. For some models, 8-bit weights and 16-bit activations (INT8W/INT16Act.) are used to further improve performance of post-training quantization.
[4] Results comparing float and quantized performance
[5] Script for quantized evaluation using the model referenced in “Quantized Model” column

Detailed Results

RetinaNet

(COCO dataset)

Average Precision/Recall @[ IoU | area | maxDets] FP32 INT8
Average Precision @[ 0.50:0.95 | all | 100 ] 0.350 0.349
Average Precision @[ 0.50 | all | 100 ] 0.537 0.536
Average Precision @[ 0.75 | all | 100 ] 0.374 0.372
Average Precision @[ 0.50:0.95 | small | 100 ] 0.191 0.187
Average Precision @[ 0.50:0.95 | medium | 100 ] 0.383 0.381
Average Precision @[ 0.50:0.95 | large | 100 ] 0.472 0.472
Average Recall @[ 0.50:0.95 | all | 1 ] 0.306 0.305
Average Recall @[0.50:0.95 | all | 10 ] 0.491 0.490
Average Recall @[ 0.50:0.95 | all |100 ] 0.533 0.532
Average Recall @[ 0.50:0.95 | small | 100 ] 0.345 0.341
Average Recall @[ 0.50:0.95 | medium | 100 ] 0.577 0.577
Average Recall @[ 0.50:0.95 | large | 100 ] 0.681 0.679

SRGAN

Model Dataset PSNR SSIM
FP32 Set5/Set14/BSD100 29.17/26.17/25.45 0.853/0.719/0.668
INT8/ACT8 Set5/Set14/BSD100 28.31/25.55/24.78 0.821/0.684/0.628
INT8/ACT16 Set5/Set14/BSD100 29.12/26.15/25.41 0.851/0.719/0.666

PyTorch Models

Model Zoo

Network Model Source [1] Floating Pt (FP32) Model [2] Quantized Model [3] Results [4] Documentation
MobileNetV2 GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 71.67%
INT8: 71.14%
MobileNetV2.md
EfficientNet-lite0 GitHub Repo Pretrained Model Quantized Model (ImageNet) Top-1 Accuracy
FP32: 75.42%
INT8: 74.44%
EfficientNet-lite0.md
DeepLabV3+ GitHub Repo Pretrained Model Quantized Model (PascalVOC) mIOU
FP32: 72.62%
INT8: 72.22%
DeepLabV3.md
MobileNetV2-SSD-Lite GitHub Repo Pretrained Model Quantized Model (PascalVOC) mAP
FP32: 68.7%
INT8: 68.6%
MobileNetV2-SSD-lite.md
Pose Estimation Based on Ref. Based on Ref. Quantized Model (COCO) mAP
FP32: 0.364
INT8: 0.359
mAR
FP32: 0.436
INT8: 0.432
PoseEstimation.md
SRGAN GitHub Repo Pretrained Model (older version from here) See Example (BSD100) PSNR/SSIM
FP32: 25.51/0.653
INT8: 25.5/0.648
Detailed Results
SRGAN.md
DeepSpeech2 GitHub Repo Pretrained Model See Example (Librispeech Test Clean) WER
FP32
9.92%
INT8: 10.22%
DeepSpeech2.md

[1] Original FP32 model source
[2] FP32 model checkpoint
[3] Quantized Model: For models quantized with post-training technique, refers to FP32 model which can then be quantized using AIMET. For models optimized with QAT, refers to model checkpoint with fine-tuned weights. 8-bit weights and activations are typically used. For some models, 8-bit weights and 16-bit weights are used to further improve performance of post-training quantization.
[4] Results comparing float and quantized performance
[5] Script for quantized evaluation using the model referenced in “Quantized Model” column

Detailed Results

SRGAN Pytorch

Model Dataset PSNR SSIM
FP32 Set5/Set14/BSD100 29.93/26.58/25.51 0.851/0.709/0.653
INT8 Set5/Set14/BSD100 29.86/26.59/25.55 0.845/0.705/0.648

Examples

Install AIMET

Before you can run the example script for a specific model, you need to install the AI Model Efficiency ToolKit (AIMET) software. Please see this Getting Started page for an overview. Then install AIMET and its dependencies using these Installation instructions.

NOTE: To obtain the exact version of AIMET software that was used to test this model zoo, please install release 1.13.0 when following the above instructions.

Running the scripts

Download the necessary datasets and code required to run the example for the model of interest. The examples run quantized evaluation and if necessary apply AIMET techniques to improve quantized model performance. They generate the final accuracy results noted in the table above. Refer to the Docs for TensorFlow or PyTorch folder to access the documentation and procedures for a specific model.

Team

AIMET Model Zoo is a project maintained by Qualcomm Innovation Center, Inc.

License

Please see the LICENSE file for details.

Comments
  • Added PyTorch FFNet model, added INT4 to several models

    Added PyTorch FFNet model, added INT4 to several models

    Added the following new model: PyTorch FFNet Added INT4 quantization support to the following models:

    • Pytorch Classification (regnet_x_3_2gf, resnet18, resnet50)
    • PyTorch HRNet Posenet
    • PyTorch HRNet
    • PyTorch EfficientNet Lite0
    • PyTorch DeeplabV3-MobileNetV2

    Signed-off-by: Bharath Ramaswamy [email protected]

    opened by quic-bharathr 0
  • Added TensorFlow ModuleDet-EdgeTPU and PyToch InverseForm models

    Added TensorFlow ModuleDet-EdgeTPU and PyToch InverseForm models

    Added two new models - TensorFlow ModuleDet-EdgeTPU and PyToch InverseForm models Fixed TF version for 2 models in README file Minor updates to Tensorflow EfficientNet Lite-0 doc and PyTorch ssd_mobilenetv2 script

    Signed-off-by: Bharath Ramaswamy [email protected]

    opened by quic-bharathr 0
  • Updated post estimation evaluation code and documentation for updated…

    Updated post estimation evaluation code and documentation for updated…

    … model .pth file with weights state-dict Fixed model loading problem by including model definition in pose_estimation_quanteval.py Add Quantizer Op Assumptions to Pose Estimation document

    Signed-off-by: Bharath Ramaswamy [email protected]

    opened by quic-bharathr 0
  • error when run the pose estimation example

    error when run the pose estimation example

    $ python3.6 pose_estimation_quanteval.py pe_weights.pth ./data/

    2022-05-24 22:37:22,500 - root - INFO - AIMET defining network with shared weights Traceback (most recent call last): File "pose_estimation_quanteval.py", line 700, in pose_estimation_quanteval(args) File "pose_estimation_quanteval.py", line 687, in pose_estimation_quanteval sim = quantsim.QuantizationSimModel(model, dummy_input=(1, 3, 128, 128), quant_scheme=args.quant_scheme) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/quantsim.py", line 157, in init self.connected_graph = ConnectedGraph(self.model, dummy_input) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/meta/connectedgraph.py", line 132, in init self._construct_graph(model, model_input) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/meta/connectedgraph.py", line 254, in _construct_graph module_tensor_shapes_map = ConnectedGraph._generate_module_tensor_shapes_lookup_table(model, model_input) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/meta/connectedgraph.py", line 244, in _generate_module_tensor_shapes_lookup_table run_hook_for_layers_with_given_input(model, model_input, forward_hook, leaf_node_only=False) File "/home/jlchen/.local/lib/python3.6/site-packages/aimet_torch/utils.py", line 277, in run_hook_for_layers_with_given_input _ = model(*input_tensor) File "/home/jlchen/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1071, in _call_impl result = forward_call(*input, **kwargs) TypeError: forward() takes 2 positional arguments but 5 were given

    opened by sundyCoder 0
  • I try to quantize deepspeech demo,but error happend

    I try to quantize deepspeech demo,but error happend

    ImportError: /home/mi/anaconda3/envs/aimet/lib/python3.7/site-packages/aimet_common/x86_64-linux-gnu/aimet_tensor_quantizer-0.0.0-py3.7-linux-x86_64.egg/AimetTensorQuantizer.cpython-37m-x86_64-linux-gnu.so: undefined symbol: _ZNK2at6Tensor8data_ptrIfEEPT_v

    platform:Ubuntu 18.04 GPU: nvidia 2070 CUDA:11.1 pytorch python:3.7

    opened by fmbao 0
  • Request for the MobileNet-V1-1.0 quantized (INT8) model.

    Request for the MobileNet-V1-1.0 quantized (INT8) model.

    Thank you for sharing these valuable models. I'd like to evaluate and look into the 'MobileNet-v1-1.0' model quantized by the DFQ. I'd appreciate it if you could provide the quantized MobileNet-v1-1.0 model either in TF or in PyTorch.

    opened by yschoi-dev 0
  • What's the runtime and AI Framework for DeepSpeech2?

    What's the runtime and AI Framework for DeepSpeech2?

    For DeepSpeech2, may I know what's the runtime for it's quantized (INT8 ) model, Hexagan DSP, NPU or others? And what's the AI framework, SNPE, Hexagan NN or others? Thanks~

    opened by sunfangxun 0
  • Unable to replicate DeepLabV3 Pytorch Tutorial numbers

    Unable to replicate DeepLabV3 Pytorch Tutorial numbers

    I've been working through the DeepLabV3 Pytorch tutorial, which can be founded here: https://github.com/quic/aimet-model-zoo/blob/develop/zoo_torch/Docs/DeepLabV3.md.

    However, when running the evaluation script using optimized checkpoint, I am unable to replicate the mIOU result that was listed in the table. The number that I got was 0.67 while the number reported by Qualcomm was 0.72. I was wondering if anyone have had this issue before and how to resolve it ?

    opened by LLNLanLeN 3
Releases(repo_restructured_1)
Owner
Qualcomm Innovation Center
Qualcomm Innovation Center
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023