A curated list of awesome deep long-tailed learning resources.

Overview

Awesome Long-Tailed Learning

A curated list of awesome deep long-tailed learning resources. We recently released Deep Long-Tailed Learning: A Survey to the community. In this survey, we reviewed recent advances in long-tailed learning based on deep neural networks.

Specifically, existing long-tailed learning studies can be grouped into three main categories (i.e., class re-balancing, information augmentation and module improvement), which can be further classified into nine sub-categories (as shown in the below figure). We also empirically analyzed several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance. We concluded the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research. After completing this survey, we decided to release the collected long-tailed learning resources, hoping to push the development of the community. If you have any questions or suggestions, please feel free to contact us.

1. Type of Long-tailed Learning

Symbol Sampling CSL LA TL Aug
Type Re-sampling Cost-sensitive Learning Logit Adjustment Transfer Learning Data Augmentation
Symbol RL CD DT Ensemble other
Type Representation Learning Classifier Design Decoupled Training Ensemble Learning Other Types

2. Top-tier Conference Papers

2021

Title Venue Year Type Code
Improving contrastive learning on imbalanced seed data via open-world sampling NeurIPS 2021 Sampling,TL, DC Official
Semi-supervised semantic segmentation via adaptive equalization learning NeurIPS 2021 Sampling,CSL,TL, Aug Official
On model calibration for long-tailed object detection and instance segmentation NeurIPS 2021 LA Official
Label-imbalanced and group-sensitive classification under overparameterization NeurIPS 2021 LA
Towards calibrated model for long-tailed visual recognition from prior perspective NeurIPS 2021 Aug, RL Official
Supercharging imbalanced data learning with energy-based contrastive representation transfer NeurIPS 2021 Aug, TL, RL Official
VideoLT: Large-scale long-tailed video recognition ICCV 2021 Sampling Official
Exploring classification equilibrium in long-tailed object detection ICCV 2021 Sampling,CSL Official
GistNet: a geometric structure transfer network for long-tailed recognition ICCV 2021 Sampling,TL, DC
FASA: Feature augmentation and sampling adaptation for long-tailed instance segmentation ICCV 2021 Sampling,CSL
ACE: Ally complementary experts for solving long-tailed recognition in one-shot ICCV 2021 Sampling,Ensemble Official
Influence-Balanced Loss for Imbalanced Visual Classification ICCV 2021 CSL Official
Re-distributing biased pseudo labels for semi-supervised semantic segmentation: A baseline investigation ICCV 2021 TL Official
Self supervision to distillation for long-tailed visual recognition ICCV 2021 TL Official
Distilling virtual examples for long-tailed recognition ICCV 2021 TL
MosaicOS: A simple and effective use of object-centric images for long-tailed object detection ICCV 2021 TL Official
Parametric contrastive learning ICCV 2021 RL Official
Distributional robustness loss for long-tail learning ICCV 2021 RL Official
Learning of visual relations: The devil is in the tails ICCV 2021 DT
Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection ICML 2021 Sampling Official
Delving into deep imbalanced regression ICML 2021 Other Official
Long-tailed multi-label visual recognition by collaborative training on uniform and re-balanced samplings CVPR 2021 Sampling,Ensemble
Equalization loss v2: A new gradient balance approach for long-tailed object detection CVPR 2021 CSL Official
Seesaw loss for long-tailed instance segmentation CVPR 2021 CSL Official
Adaptive class suppression loss for long-tail object detection CVPR 2021 CSL Official
PML: Progressive margin loss for long-tailed age classification CVPR 2021 CSL
Disentangling label distribution for long-tailed visual recognition CVPR 2021 CSL,LA Official
Adversarial robustness under long-tailed distribution CVPR 2021 CSL,LA,CD Official
Distribution alignment: A unified framework for long-tail visual recognition CVPR 2021 CSL,LA,DT Official
Improving calibration for long-tailed recognition CVPR 2021 CSL,Aug,DT Official
CReST: A classrebalancing self-training framework for imbalanced semi-supervised learning CVPR 2021 TL Official
Conceptual 12M: Pushing web-scale image-text pre-training to recognize long-tail visual concepts CVPR 2021 TL Official
RSG: A simple but effective module for learning imbalanced datasets CVPR 2021 TL,Aug Official
MetaSAug: Meta semantic augmentation for long-tailed visual recognition CVPR 2021 Aug Official
Contrastive learning based hybrid networks for long-tailed image classification CVPR 2021 RL
Unsupervised discovery of the long-tail in instance segmentation using hierarchical self-supervision CVPR 2021 RL
Long-tail learning via logit adjustment ICLR 2021 LA Official
Long-tailed recognition by routing diverse distribution-aware experts ICLR 2021 TL,Ensemble Official
Exploring balanced feature spaces for representation learning ICLR 2021 RL,DT

2020

Title Venue Year Type Code
Balanced meta-softmax for long-taield visual recognition NeurIPS 2020 Sampling,CSL Official
Posterior recalibration for imbalanced datasets NeurIPS 2020 LA Official
Long-tailed classification by keeping the good and removing the bad momentum causal effect NeurIPS 2020 LA,CD Official
Rethinking the value of labels for improving classimbalanced learning NeurIPS 2020 TL,RA Official
The devil is in classification: A simple framework for long-tail instance segmentation ECCV 2020 Sampling,DT,Ensemble Official
Imbalanced continual learning with partitioning reservoir sampling ECCV 2020 Sampling Official
Distribution-balanced loss for multi-label classification in long-tailed datasets ECCV 2020 CSL Official
Feature space augmentation for long-tailed data ECCV 2020 TL,Aug,DT
Learning from multiple experts: Self-paced knowledge distillation for long-tailed classification ECCV 2020 TL,Ensemble Official
Solving long-tailed recognition with deep realistic taxonomic classifier ECCV 2020 CD Official
Learning to segment the tail CVPR 2020 Sampling,TL Official
BBN: Bilateral-branch network with cumulative learning for long-tailed visual recognition CVPR 2020 Sampling,Ensemble Official
Overcoming classifier imbalance for long-tail object detection with balanced group softmax CVPR 2020 Sampling,Ensemble Official
Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation perspective CVPR 2020 CSL Official
Equalization loss for long-tailed object recognition CVPR 2020 CSL Official
Domain balancing: Face recognition on long-tailed domains CVPR 2020 CSL
M2m: Imbalanced classification via majorto-minor translation CVPR 2020 TL,Aug Official
Deep representation learning on long-tailed data: A learnable embedding augmentation perspective CVPR 2020 TL,Aug,RL
Inflated episodic memory with region self-attention for long-tailed visual recognition CVPR 2020 RL
Decoupling representation and classifier for long-tailed recognition ICLR 2020 Sampling,CSL,RL,CD,DT Official

2019

Title Venue Year Type Code
Meta-weight-net: Learning an explicit mapping for sample weighting NeurIPS 2019 CSL Official
Learning imbalanced datasets with label-distribution-aware margin loss NeurIPS 2019 CSL Official
Dynamic curriculum learning for imbalanced data classification ICCV 2019 Sampling
Class-balanced loss based on effective number of samples CVPR 2019 CSL Official
Striking the right balance with uncertainty CVPR 2019 CSL
Feature transfer learning for face recognition with under-represented data CVPR 2019 TL,Aug
Unequal-training for deep face recognition with long-tailed noisy data CVPR 2019 RL Official
Large-scale long-tailed recognition in an open world CVPR 2019 RL Official

2018

Title Venue Year Type Code
Large scale fine-grained categorization and domain-specific transfer learning CVPR 2018 TL Official

2017

Title Venue Year Type Code
Learning to model the tail NeurIPS 2017 CSL
Focal loss for dense object detection ICCV 2017 CSL
Range loss for deep face recognition with long-tailed training data ICCV 2017 RL
Class rectification hard mining for imbalanced deep learning ICCV 2017 RL

2016

Title Venue Year Type Code
Learning deep representation for imbalanced classification CVPR 2016 Sampling,RL
Factors in finetuning deep model for object detection with long-tail distribution CVPR 2016 CSL,RL

3. Benchmark Datasets

Dataset Long-tailed Task # Class # Training data # Test data
ImageNet-LT Classification 1,000 115,846 50,000
CIFAR100-LT Classification 100 50,000 10,000
Places-LT Classification 365 62,500 36,500
iNaturalist 2018 Classification 8,142 437,513 24,426
LVIS v0.5 Detection and Segmentation 1,230 57,000 20,000
LVIS v1 Detection and Segmentation 1,203 100,000 19,800
VOC-LT Multi-label Classification 20 1,142 4,952
COCO-LT Multi-label Classification 80 1,909 5,000
VideoLT Video Classification 1,004 179,352 25,622

4. Empirical Studies

(1) Long-tailed benchmarking performance

  • We evaluate several state-of-the-art methods on ImageNet-LT to see to what extent they handle class imbalance via new evaluation metrics, i.e., UA (upper bound accuracy) and RA (relative accuracy). We categorize these methods based on class re-balancing (CR), information augmentation (IA) and module improvement (MI).

  • Almost all long-tailed methods perform better than the Softmax baseline in terms of accuracy, which demonstrates the effectiveness of long-tailed learning.
  • Training with 200 epochs leads to better performance for most long-tailed methods, since sufficient training enables deep models to fit data better and learn better image representations.
  • In addition to accuracy, we also evaluate long-tailed methods based on UA and RA. For the methods that have higher UA, the performance gain comes not only from the alleviation of class imbalance, but also from other factors, like data augmentation or better network architectures. Therefore, simply using accuracy for evaluation is not accurate enough, while our proposed RA metric provides a good complement, since it alleviates the influences of factors apart from class imbalance.
  • For example, MiSLAS, based on data mixup, has higher accuracy than Balanced Sofmtax under 90 training epochs, but it also has higher UA. As a result, the relative accuracy of MiSLAS is lower than Balanced Sofmtax, which means that Balanced Sofmtax alleviates class imbalance better than MiSLAS under 90 training epochs.
  • Although some recent high-accuracy methods have lower RA, the overall development trend of long-tailed learning is still positive, as shown in the below figure.

  • The current state-of-the-art long-tailed method in terms of both accuracy and RA is TADE (ensemble-based method).

(2) More discussions on cost-sensitive losses

  • We further evaluate the performance of different cost-sensitive learning losses based on the decoupled training scheme.
  • Decoupled training, compared to joint training, can further improve the overall performance of most cost-sensitive learning methods apart from balanced softmax (BS).
  • Although BS outperofmrs other cost-sensitive losses under one-stage training, they perform comparably under decoupled training. This implies that although these cost-sensitive losses perform differently under joint training, they essentially learn similar quality of feature representations.

5. Citation

If this repository is helpful to you, please cite our survey.

@article{zhang2021deep,
  title={Deep long-tailed learning: A survey},
  author={Zhang, Yifan and Kang, Bingyi and Hooi, Bryan and Yan, Shuicheng and Feng, Jiashi},
  journal={arXiv preprint arXiv:2110.04596},
  year={2021}
}

5. Other Resources

Owner
vanint
vanint
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023