Plotting points that lie on the intersection of the given curves using gradient descent.

Overview

Plotting intersection of curves using gradient descent

Webapp Link ---> Streamlit App

What's the app about Why this app
Plotting functions and their intersection. An interesting application of gradient descent.
I'm a fan of plotting graphs (and visualizations in general).

Let's say you are giving equations of curves and you need to plot the intersection of these curves. As an example, say you have 2 spheres (3D), how would you plot the intersection of the given spheres?

... x, a & b are vectors of size 3.

My first approach to this problem was finding the equation of intersection of these 2 functions by equating them i.e. F_1(x) = F_2(x). Then trying to simplify the equation and use that equation to plot the points. This approach is not feasible for 2 reasons:

  1. Equating the 2 functions won't necessarily give you the equation of intersection. For instance, equating 2 equations of spheres will give you intersection plane of the spheres and not the equation of intersecting circle (if any).
  2. Even if you had an equation, the question still remains, how to plot points from a given equation?

If you observe, points that lie on the intersection of the curves should satisfy all the functions separately i.e.

So, another approach (highly ineffective) would be to generate points randomly everytime and see if they satisfy all the given equations. If it does, it is a valid 'point'. Else, generate another random point and repeat untill you have sufficient points. Downsides of this approach:

  1. The search space is too big. Even bigger for N-dimensional points.
  2. Highly ineffective approach. Might take forever to stumble upon such valid points.

Gradient Descent to the rescue

Can we modify the previous approach- Instead of discarding an invalid randomly generated point, can we update it iteratively so that it approaches a valid solution? If so, what would it mean to be a valid solution and when should we stop updating the sample?

What should be the criteria for a point x to be a valid solution?

If the point lies on the intersection of the curves, it should satisfy for all i i.e.

; &

We can define a function as the summation of the given functions to hold the above condition.

So, we can say that a point will be valid when it satisfies G(x) = 0, since it will only hold when all the F_i(x) are zero. This will be our criterion for checking if the point is a valid solution.

However, we are not yet done. The range of G(x) can be from . This means, the minimum value of G(x) is not necessarily 0. This is a problem because if we keep minimizing G(x) iteratively by updating x, the value of G(x) will cross 0 and approach a negative value (it's minima).

This could be solved if the minima of G(x) is 0 itself. This way we can keep updating x until G(x) approaches the minima (0 in this case). So, we need to do slight modification in G(x) such that its minimum value is 0.

My first instict was to define G(x) as the sum of absolute F_i(x) i.e.

The minimum value of this function will be 0 and will hold all the conditions discussed above. However, if we are trying to use Gradient Descent, using modulus operation can be problematic because the function may not remain smooth anymore.

So, what's an easy alternative for modulus operator which also holds the smoothness property? - Use squares!

This function can now be minimised to get the points of intersection of the curves.

  1. The function will be smooth and continuos. Provided F(x) are themselves smooth and continuous.
  2. The minimum value of G(x) is zero.
  3. The minimum value of G(x) represents the interesection of all F_i(x)
 Generate a random point x
 While G(x) != 0:
    x = x - lr * gradient(G(x))
    
 Repeat for N points.


Assumptions:

  1. Curves do intersect somewhere.
  2. The individual curves are themselves differentiable.
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022