[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

Overview

MedMNIST

Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21)

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, Bingbing Ni

We introduce MedMNIST v2, a large-scale MNIST-like collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into 28x28 (2D) or 28x28x28 (3D) with the corresponding classification labels, so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various data scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression and multi-label). The resulting dataset, consisting of 708,069 2D images and 10,214 3D images in total, could support numerous research / educational purposes in biomedical image analysis, computer vision and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D / 3D neural networks and open-source / commercial AutoML tools.

MedMNISTv2_overview

For more details, please refer to our paper:

MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification (arXiv)

Key Features

  • Diverse: It covers diverse data modalities, dataset scales (from 100 to 100,000), and tasks (binary/multi-class, multi-label, and ordinal regression). It is as diverse as the VDD and MSD to fairly evaluate the generalizable performance of machine learning algorithms in different settings, but both 2D and 3D biomedical images are provided.
  • Standardized: Each sub-dataset is pre-processed into the same format, which requires no background knowledge for users. As an MNIST-like dataset collection to perform classification tasks on small images, it primarily focuses on the machine learning part rather than the end-to-end system. Furthermore, we provide standard train-validation-test splits for all datasets in MedMNIST v2, therefore algorithms could be easily compared.
  • Lightweight: The small size of 28×28 (2D) or 28×28×28 (3D) is friendly to evaluate machine learning algorithms.
  • Educational: As an interdisciplinary research area, biomedical image analysis is difficult to hand on for researchers from other communities, as it requires background knowledge from computer vision, machine learning, biomedical imaging, and clinical science. Our data with Creative Commons (CC) Licenses is easy to use for educational purposes.

Please note that this dataset is NOT intended for clinical use.

Code Structure

  • medmnist/:
    • dataset.py: PyTorch datasets and dataloaders of MedMNIST.
    • evaluator.py: Standardized evaluation functions.
    • info.py: Dataset information dict for each subset of MedMNIST.
  • examples/:
    • getting_started.ipynb: To explore the MedMNIST dataset with jupyter notebook. It is ONLY intended for a quick exploration, i.e., it does not provide full training and evaluation functionalities.
    • getting_started_without_PyTorch.ipynb: This notebook provides snippets about how to use MedMNIST data (the .npz files) without PyTorch.
  • setup.py: To install medmnist as a module.
  • [EXTERNAL] MedMNIST/experiments: training and evaluation scripts to reproduce both 2D and 3D experiments in our paper, including PyTorch, auto-sklearn, AutoKeras and Google AutoML Vision together with their weights ;)

Installation and Requirements

Setup the required environments and install medmnist as a standard Python package:

pip install --upgrade git+https://github.com/MedMNIST/MedMNIST.git

Check whether you have installed the latest version:

>>> import medmnist
>>> print(medmnist.__version__)

The code requires only common Python environments for machine learning. Basically, it was tested with

  • Python 3 (Anaconda 3.6.3 specifically)
  • PyTorch==1.3.1
  • numpy==1.18.5, pandas==0.25.3, scikit-learn==0.22.2, Pillow==8.0.1, fire

Higher (or lower) versions should also work (perhaps with minor modifications).

If you use PyTorch

  • Great! Our code is designed to work with PyTorch.

  • Explore the MedMNIST dataset with jupyter notebook (getting_started.ipynb), and train basic neural networks in PyTorch.

If you do not use PyTorch

  • Although our code is tested with PyTorch, you are free to parse them with your own code (without PyTorch or even without Python!), as they are only standard NumPy serialization files. It is simple to create a dataset without PyTorch.
  • Go to getting_started_without_PyTorch.ipynb, which provides snippets about how to use MedMNIST data (the .npz files) without PyTorch.
  • Simply change the super class of MedMNIST from torch.utils.data.Dataset to collections.Sequence, you will get a standard dataset without PyTorch. Check dataset_without_pytorch.py for more details.
  • You still have most functionality of our MedMNIST code ;)

Dataset

Please download the dataset(s) via Zenodo. You could also use our code to download automatically by setting download=True in dataset.py.

The MedMNIST dataset contains several subsets. Each subset (e.g., pathmnist.npz) is comprised of 6 keys: train_images, train_labels, val_images, val_labels, test_images and test_labels.

  • train_images / val_images / test_images: N × 28 × 28 for 2D gray-scale datasets, N × 28 × 28 × 3 for 2D RGB datasets, N × 28 × 28 × 28 for 3D datasets. N denotes the number of samples.
  • train_labels / val_labels / test_labels: N x L. N denotes the number of samples. L denotes the number of task labels; for single-label (binary/multi-class) classification, L=1, and {0,1,2,3,..,C} denotes the category labels (C=1 for binary); for multi-label classification L!=1, e.g., L=14 for chestmnist.npz.

Command Line Tools

  • List all available datasets:

      python -m medmnist available
    
  • Download all available datasets:

      python -m medmnist download
    
  • Delete all downloaded npz from root:

      python -m medmnist clean
    
  • Print the dataset details given a subset flag:

      python -m medmnist info --flag=xxxmnist
    
  • Save the dataset as standard figure and csv files, which could be used for AutoML tools, e.g., Google AutoML Vision:

      python -m medmnist save --flag=xxxmnist --folder=tmp/
    
  • Parse and evaluate a standard result file, refer to Evaluator.parse_and_evaluate for details.

      python -m medmnist evaluate --path=folder/{flag}_{split}@{run}.csv
    

Citation

If you find this project useful, please cite both v1 and v2 paper as:

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, Bingbing Ni. "MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification". arXiv preprint arXiv:2110.14795, 2021.

Jiancheng Yang, Rui Shi, Bingbing Ni. "MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis". IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021.

or using the bibtex:

@article{medmnistv2,
    title={MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification},
    author={Yang, Jiancheng and Shi, Rui and Wei, Donglai and Liu, Zequan and Zhao, Lin and Ke, Bilian and Pfister, Hanspeter and Ni, Bingbing},
    journal={arXiv preprint arXiv:2110.14795},
    year={2021}
}
 
@inproceedings{medmnistv1,
    title={MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis},
    author={Yang, Jiancheng and Shi, Rui and Ni, Bingbing},
    booktitle={IEEE 18th International Symposium on Biomedical Imaging (ISBI)},
    pages={191--195},
    year={2021}
}

Please also cite the corresponding paper of source data if you use any subset of MedMNIST as per the project page.

LICENSE

The code is under Apache-2.0 License.

The datasets are under Creative Commons (CC) Licenses in general. Each subset keeps the same license as that of the source dataset.

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023