Provide baselines and evaluation metrics of the task: traffic flow prediction

Overview

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction.

Due to technical reasons, I did not fork their code.

Introduction

This repo provide the implementations of baselines in the field traffic flow prediction. Most of the code in this field is too out-of-date to run, so I use docker to save you from installing tedious frameworks and provide one-line command to run the whole models. Before running, make sure copy TaxiBJ dataset to the data folder. Check Out QuickStart, where I provide out-of-the-box tutorial for you to use this repo!

Install tedious frameworks with few lines of code

git clone https://github.com/pengzhangzhi/Benchmark-Traffic-flow-prediction-.git
cd Benchmark-Traffic-flow-prediction-
docker pull tensorflow/tensorflow:2.4.3-gpu
docker run -it tensorflow/tensorflow:2.4.3-gpu
pip install -r requirements.txt

Run Baselines

bash train_TaxiBJ.sh
bash train_TaxiNYC.sh

Repository structure

Each of the main folders is dedicated to a specific deep learning network. Some of them were taken and modified from other repositories associated with the source paper, while others are our original implementations. Here it is an exhaustive list:

  • ST-ResNet. Folder for [1]. The original source code is here.
  • MST3D. Folder with our original implementation of the model described in [2].
  • Pred-CNN. Folder for [3]. The original repository is here.
  • ST3DNet. Folder for [4]. The starting-point code can be found here.
  • STAR. Folder for [5]. Soure code was taken from here.
  • 3D-CLoST. Folder dedicated to a model created during another research at Università Bicocca.
  • STDN. Folder referring to [6]. This folder is actually a copy of this repository, since it was never used in our experimentes.
  • Autoencoder. Refer to paper: Listening to the city, attentively: A Spatio-TemporalAttention Boosted Autoencoder for the Short-Term Flow Prediction Problem.

The contents of these folders can be a little different from each other, accordingly to the structure of the source repositories. Nevertheless, in each of them there are all the codes used to create input flow volumes, training and testing the models for single step prediction, and to evaluate performance on multi step prediction and transfer learning experiments.

The remaining folders are:

  • baselines. Contains the code implementing Historical Average and ARIMA approaches to the traffic flow prediction problem.
  • data. Folder where source data should be put in.
  • helpers. Contains some helpers code used for data visualization or to get weather info through an external API.

References

[1] Zhang, Junbo, Yu Zheng, and Dekang Qi. "Deep spatio-temporal residual networks for citywide crowd flows prediction." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. No. 1. 2017.

[2] Chen, Cen, et al. "Exploiting spatio-temporal correlations with multiple 3d convolutional neural networks for citywide vehicle flow prediction." 2018 IEEE international conference on data mining (ICDM). IEEE, 2018.

[3] Xu, Ziru, et al. "PredCNN: Predictive Learning with Cascade Convolutions." IJCAI. 2018.

[4] Guo, Shengnan, et al. "Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting." IEEE Transactions on Intelligent Transportation Systems 20.10 (2019): 3913-3926.

[5] Wang, Hongnian, and Han Su. "STAR: A concise deep learning framework for citywide human mobility prediction." 2019 20th IEEE International Conference on Mobile Data Management (MDM). IEEE, 2019.

[6] Yao, Huaxiu, et al. "Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. No. 01. 2019.

[7] Liu, Yang, et al. "Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction." IEEE Transactions on Intelligent Transportation Systems 21.11 (2019): 4798-4807.

[8] Woo, Sanghyun, et al. "Cbam: Convolutional block attention module." Proceedings of the European conference on computer vision (ECCV). 2018.

Owner
Zhangzhi Peng
On the way of science :-)
Zhangzhi Peng
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022