Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Related tags

Deep Learningswagan
Overview

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

acm arXiv

Teaser image

SWAGAN: A Style-based Wavelet-driven Generative Model
Rinon Gal, Dana Cohen Hochberg, Amit Bermano, Daniel Cohen-Or

Abstract:
In recent years, considerable progress has been made in the visual quality of Generative Adversarial Networks (GANs). Even so, these networks still suffer from degradation in quality for high-frequency content, stemming from a spectrally biased architecture, and similarly unfavorable loss functions. To address this issue, we present a novel general-purpose Style and WAvelet based GAN (SWAGAN) that implements progressive generation in the frequency domain. SWAGAN incorporates wavelets throughout its generator and discriminator architectures, enforcing a frequency-aware latent representation at every step of the way. This approach, designed to directly tackle the spectral bias of neural networks, yields an improvement in the ability to generate medium and high frequency content, including structures which other networks fail to learn. We demonstrate the advantage of our method by integrating it into the SyleGAN2 framework, and verifying that content generation in the wavelet domain leads to more realistic high-frequency content, even when trained for fewer iterations. Furthermore, we verify that our model's latent space retains the qualities that allow StyleGAN to serve as a basis for a multitude of editing tasks, and show that our frequency-aware approach also induces improved high-frequency performance in downstream tasks.

Requirements

Our code borrows heavily from the original StyleGAN2 implementation. The list of requirements is thus identical:

  • 64-bit Python 3.6 installation. We recommend Anaconda3 with numpy 1.14.3 or newer.
  • TensorFlow 1.14 or 1.15 with GPU support. The code does not support TensorFlow 2.0.
  • On Windows, you need to use TensorFlow 1.14 — TensorFlow 1.15 will not work.
  • One or more high-end NVIDIA GPUs, NVIDIA drivers, CUDA 10.0 toolkit and cuDNN 7.5.

Using pre-trained networks

Pre-trained networks are stored as *.pkl files.

Paper models can be downloaded here. More models will be made available soon.

To generate images with a given model, use:

# Single latent generation
python run_generator.py generate-images --network=/path/to/model.pkl \
  --seeds=6600-6625 --truncation-psi=1.0 --result-dir /path/to/output/

# Style mixing
python run_generator.py style-mixing-example --network=/path/to/model.pkl \
  --row-seeds=85,100,75,458,1500 --col-seeds=55,821,1789,293 \
  --truncation-psi=1.0 --result-dir /path/to/output/

Training networks

To train a model, run:

python run_training.py --data-dir=/path/to/data --config=config-f-Gwavelets-Dwavelets \ 
  --dataset=data_folder_name --mirror-augment=true

For other configurations, see run_training.py.

Evaluation metrics

FID metrics can be computed using the original StyleGAN2 scripts:

python run_metrics.py --data-dir=/path/to/data --network=/path/to/model.pkl \
  --metrics=fid50k --dataset=data_folder_name --mirror-augment=true

Spectrum Gap plots:

Coming soon.

License

The original StyleGAN2 implementation and this derivative work are available under the Nvidia Source Code License-NC. To view a copy of this license, visit https://nvlabs.github.io/stylegan2/license.html

Citation

@article{gal2021swagan,
author = {Gal, Rinon and Hochberg, Dana Cohen and Bermano, Amit and Cohen-Or, Daniel},
title = {SWAGAN: A Style-Based Wavelet-Driven Generative Model},
year = {2021},
issue_date = {August 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {40},
number = {4},
issn = {0730-0301},
url = {https://doi.org/10.1145/3450626.3459836},
doi = {10.1145/3450626.3459836},
journal = {ACM Trans. Graph.},
month = jul,
articleno = {134},
numpages = {11},
keywords = {StyleGAN, wavelet decomposition, generative adversarial networks}
}

If you use our work, please consider citing StyleGAN2 as well:

@article{Karras2019stylegan2,
  title   = {Analyzing and Improving the Image Quality of {StyleGAN}},
  author  = {Tero Karras and Samuli Laine and Miika Aittala and Janne Hellsten and Jaakko Lehtinen and Timo Aila},
  journal = {CoRR},
  volume  = {abs/1912.04958},
  year    = {2019},
}

Acknowledgements

We thank Ron Mokady for their comments on an earlier version of the manuscript. We also want to thank the anonymous reviewers for identifying and assisting in the correction of flaw in an earlier version of our paper.

Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022