Prometheus Exporter for data scraped from datenplattform.darmstadt.de

Overview

darmstadt-opendata-exporter

Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format.

Pull requests welcome.

Example

# HELP darmstadt_environment_no2_micrograms_per_cubic_meter Environment measurement for no2
# TYPE darmstadt_environment_no2_micrograms_per_cubic_meter gauge
darmstadt_environment_no2_micrograms_per_cubic_meter{sensor="3ac073c4-b5b8-421d-b91a-5aa001234f7e"} 9.5615
# HELP darmstadt_environment_o3_micrograms_per_cubic_meter Environment measurement for o3
# TYPE darmstadt_environment_o3_micrograms_per_cubic_meter gauge
darmstadt_environment_o3_micrograms_per_cubic_meter{sensor="3ac073c4-b5b8-421d-b91a-5aa001234f7e"} 70.83670000000001
# HELP darmstadt_environment_pm2_5_micrograms_per_cubic_meter Environment measurement for dust_pm2.5
# TYPE darmstadt_environment_pm2_5_micrograms_per_cubic_meter gauge
darmstadt_environment_pm2_5_micrograms_per_cubic_meter{sensor="3ac073c4-b5b8-421d-b91a-5aa001234f7e"} 0.1
# HELP darmstadt_environment_so2_micrograms_per_cubic_meter Environment measurement for so2
# TYPE darmstadt_environment_so2_micrograms_per_cubic_meter gauge
darmstadt_environment_so2_micrograms_per_cubic_meter{sensor="3ac073c4-b5b8-421d-b91a-5aa001234f7e"} 0.8
# HELP darmstadt_environment_pm10_micrograms_per_cubic_meter Environment measurement for dust_pm10
# TYPE darmstadt_environment_pm10_micrograms_per_cubic_meter gauge
darmstadt_environment_pm10_micrograms_per_cubic_meter{sensor="3ac073c4-b5b8-421d-b91a-5aa001234f7e"} 0.1
# HELP darmstadt_environment_co_milligrams_per_cubic_meter Environment measurement for co
# TYPE darmstadt_environment_co_milligrams_per_cubic_meter gauge
darmstadt_environment_co_milligrams_per_cubic_meter{sensor="3ac073c4-b5b8-421d-b91a-5aa001234f7e"} 0.10592399999999999
Owner
Martin Weinelt
I'm hexa- on IRC and Matrix!
Martin Weinelt
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022